NEET MDS Lessons
Dental Materials
PFM Alloys
Applications-substructures for porcelain-fused-to-metal crowns and bridges
Classification
o High-gold alloys
o Palladium-silver alloys
o Nickel-chromium alloys
Structure
Composition
o High-gold alloys are 98% gold. platinum. And palladium
o Palladium-silver alloys are 50% to 60% palladium and 30 to 40% silver
o Nickel-chromium alloys are 70% to 80% nickel and 15% chromium with other metals
Manipulation
o Must have melting temperatures above that of porcelains to be bonded to their surface
o More difficult to cast (see section on chromium alloys)
Properties - Physical
Except for high-gold alloys, others are less dense alloys
Alloys are designed to have low thermal expansion coefficients that must be matched to the overlying porcelain
Chemical-high-gold alloys are immune, but others passivate
Mechanical-high modulus and hardness
COMPOSITE RESINS
Reaction
- Free radical polymerization
Monomers + initiator. + accelerators-+ polymer molecules
- Initiators-start polymerization by decomposing and reacting with monomer
- Accelerators-speed up initiator decomposition
- Amines used for accelerating self –curing systems
- Light used for accelerating light-curing systems
Retarders or inhibitors-prevent premature polymerization
Tooth Polishing and Cleansing Agents
1. Cleansing-removal of exogenous stains, pellicle, materia alba, and other oral debris without causing undue abrasion to tooth structure
2. Polishing-smoothening surfaces of amalgam, composite, glass ionomers, porcelain, and other restorative materials
Factors influencing cleaning and polishing
- Hardness of abrasive particles versus substrate
- Particle size of abrasive particles
- Pressure applied during procedure
- Temperature of abrasive materials
Structure
Composition
-contain abrasives, such as kaolinite, silicon dioxide, calcined magnesium silicate, diatomaceous silicon dioxide, pumice. Sodium-potassium
-aluminum silicate, or zirconium silicate; some pastes also may contain sodium fluoride or stannous fluoride, but they have never been shown to produce positive effects
Reactions-abrasion for cleansing and polishing
Properties - Mechanical
- Products with pumice and quartz produce more efficient cleansing but also generate greater abrasion of enamel and dentin
-Coarse pumice is the most abrasive
-The abrasion rate of dentin is 5 to 6 times faster than the abrasion rate of enamel, regardless of the product
-Polymeric restorative materials, such as denture bases, denture teeth, composites, PMMA veneers, and composite veneers, can be easily scratched during polishing
-Do not polish cast porcelain restorations (e.g., Dicor) that are externally characterized or the color will be lost
Root canal sealers
Applications
Cementation of silver cone gutta-percha point
Paste filling material
Types
Zinc oxide-eugenol cement types
Noneugenol cement types
Therapeutic cement types
properties
Physical-radiopacity
Chemical-insolubility
Mechanical-flow; tensile strength
Biologic-inertness
Gingival tissue packs
Application-provide temporary displacement of gingival tissues
Composition-slow setting zinc oxide-eugenol cement mixed with cotton twills for texture and strength
Surgical dressings
1.Application-gingival covering after periodontal surgery
2. Composition-modified zinc oxide-eugenol cement (containing tannic, acid. rosin, and various oils)
Orthodontic cements
Application-cementation of orthodontic bands
Composition-zinc phosphate cement
Manipulation
Zinc phosphate types are routinely mixed with cold or frozen mixing slab to extend the working time
Enamel bonding agent types use acid etching for improved bonding
Band, bracket, or cement removal requires special care
Denture Liners
Use - patients with soft tissue irritation
Types
Long-term liners (soft liners)-used over a period of months for patients with severe undercuts or continually sore residual ridges
Short-term liners (tissue conditioners)-used to facilitate tissue healing over several days
Structure
Soft liners-plasticized acrylic copolymers or silicone rubber
Tissue conditioners-PEMA plasticized with ethanol and aromatic esters
Properties
Liners flow under low pressure, allowing adaptation to soft tissues, but are elastic during chewing forces.
Low initial hardness, but liner becomes harder as plasticizers are leached out during intraoral use
Some silicone rubber liners support growth of yeasts
Dental Implants
Applications/Use
Single-tooth implants
Abutments for bridges (freestanding, attached to natural teeth)
Abutments for over dentures
Terms
Subperiosteal- below the periosteum -but above the bone (second most frequently used types)
Intramucosal-within the mucosa
Endosseous into the bone (80%of all current types)
Endodontics-through the root canal space and into the periapical bone
Transosteal-through the bone
Bone substitutes -replace. Long bone
Classification by geometric form
Blades
Root forms
Screws
Cylinders
Staples
Circumferential
Others
Classification by materials type
Metallic-titanium, stainless steel, and .chromium cobalt
Polymeric-PMMA
Ceramic hydroxyapatite, carbon, and sapphire
Classification by attachment design
Bioactive surface retention by osseointegration
Nonative porous surfaces for micromechanical retention by osseointegration
Nonactive, nonporous surface for ankylosis. By osseointegration
Gross mechanical retention designs (e.g.. threads, screws, channels, or transverse holes)
Fibrointegration by formation of fibrous tissue capsule
Combinations of the above
Components
a. Root (for. osseointegration)
b. Neck (for epithelial attachment and percutancaus sealing)
c. Intramobile elements (for shock absorption)
d. Prosthesis (for dental form and function)
Manipulation
a. Selection-based on remaining bone architecture and dimensions
b. Sterilization-radiofrequency glow discharge leaves biomaterial surface uncontaminated and sterile; autoclaving or chemical sterilization is contraindicated for some designs
Properties
1. Physical-should have low thermal and electrical conductivity
2. Chemical
a. Should be resistant to electrochemical corrosion
b. Do not expose surfaces to acids (e.g.. APF fluorides).
c. Keep in mind the effects of adjunctive therapies (e.g., Peridex)
3. Mechanical
a. Should be abrasion resistant and have a high modulus
b. Do not abrade during scaling operations (e.g.with metal scalers or air-power abrasion systems like Prophy iet)
4. Biologic-depend on osseointegration and epithelial attachment
Structure of gypsum products
Components
a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)