Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Properties of Amalgam.

The most important physical properties of amalgam are

  • Coefficient of thermal expansion = 25-1 >ppm/ C (thus amalgams allow percolation during temperature changes)
  • Thermal conductivity-high (therefore, amalgams need insulating liner or base in deep restorations)
  • Flow and creep. Flow and creep are characteristics that deal with an amalgam undergoing deformation when stressed. The lower the creep value of an amalgam, the better the marginal integrity of the restoration. Alloys with high copper content usually have lower creep values than the conventional silver-tin alloys.

 Dimensional change. An amalgam can expand or contract depending upon its usage. Dimensional change can be minimized by proper usage of alloy and mercury. Dimensional change on setting, less than ± 20 (excessive expansion can produce post operative pain)

  •  Compression strength. Sufficient strength to resist fracture is an important requirement for any restorative material. At a 50 percent mercury content, the compression strength is approximately 52,000 psi. In comparison, the compressive strength of dentin and enamel is 30,000 psi and 100,000 psi, respectively. The strength of an amalgam is determined primarily by the composition of the alloy, the amount of residual mercury remaining after condensation, and the degree of porosity in the amalgam restoration.
  • Electrochemical corrosion produces penetrating corrosion of low-copper amalgams but only produces superficial corrosion of high copper amalgams, so they last longer
  • Because of low tensile strength, enamel support is needed at margins
  • Spherical high-copper alloys develop high tensile strength faster and can be polished sooner
  • Excessive creep is associated with silver mercury phase of low-copper amalgams and contributes to early marginal fracture
  • Marginal fracture correlated with creep and electrochemical corrosion in low-copper amalgams
  • Bulk fracture (isthmus fracture) occurs across thinnest portions of amalgam restorations because  of high stresses during traumatic occlusion and/or the accumulated effects of fatigue
  • Dental amalgam is very resistant to abrasion

       

Gypsum Products

 

Characteristics

Plaster

Stone

Diestone

Chemical Name

Beta-Calcium Sulfate hemihydrate

Alpha-Calcium sulfate hemihydrate

Alpha-Calcium sulfate hemihydrate

Formula

CaSO4 – ½ H2O

CaSO4 – ½ H2O

CaSO4 – ½ H2O

Uses

Plaster Models ,Impression Plasters

Cast Stone, Investment

Improved Stone, diestone

Water(W)

Reaction Water

Extra Water

Total water

Powder (P)

W/P Ratio

 

18ml

32ml

50ml

100g

0.50

 

18ml

12ml

30ml

100g

0.30

 

18ml

6ml

24ml

100g

0.24

METALLURGICAL TERMS

a. Cold Working. This is the process of changing the shape of a metal by rolling, pounding, bending, or twisting at normal room temperature.

b. Strain Hardening. This occurs when a metal becomes stiffer and harder because of continued or repeated application of a load or force. At this point, no further slippage of the atoms of the metal can occur without fracture.

c. Heat Softening Treatment (Annealing). This treatment is necessary in order to continue manipulating a metal after strain hardening to prevent it from fracturing. The process of annealing consists of heating the metal to the proper temperature (as indicated by the manufacturer's instructions) and cooling it rapidly by immersing in cold water. Annealing relieves stresses and strains caused by cold working and restores slipped atoms within the metal to their regular arrangement.

d. Heat Hardening Treatment (Tempering). This treatment is necessary to restore to metals properties that are decreased by annealing and cold working. Metals to be heat hardened should first be heat softened (annealed) so that all strain hardening is relieved and the hardening process can be properly controlled. Heat hardening is accomplished in dental gold alloy by heating to 840o Fahrenheit, allowing it to cool slowly over a 15-minute period to 480o Fahrenheit, and then immersing it in water.

Stages of manipulation

Definitions of intervals

  • Mixing interval-length of time of the mixing stage.
  • Working interval-length of time of the working stage
  •  Setting interval-length of time of the setting stage

Definitions of times

  • Mixing time-the elapsed time from the onset to the completion of mixing
  • Working time-the elapsed time from the onset of mixing until the onset of the initial setting time
  • Initial setting time-time at which sufficient reaction has occurred  to cause the materials to be resistant to  further manipulation
  • Final setting time-time at which the material practically is set as defined by its resistance to indentation

[All water-based materials lose their gloss at the time of setting]

Finishing and Polishing

Remove oxygen-inhibited layer .Use stones or carbide burs for gross reduction.Use highly fluted carbide burs or special diamonds for fine reduction.Use aluminum oxide strips or disks for finishing. Use fine aluminum oxide finishing pastes. Microfills develop smoothest finish because of small size of filler particles
 

Cement Bases

Applications

•    Thermal insulation below a restoration
•    Mechanical protection where there is inadequate dentin to support amalgam condensation pressures

Types

•    Zinc phosphate cement bases
•    Polycarboxylate cement bases
•    Glass ionomer cement bases (self-curing and light-curing)

Components

o    Reactive powder (chemically basic)
o    Reactive liquid (chemically acidic)

Reaction

o    Acid-base reaction that forms salts or cross linked matrix
o    Reaction may be exothermic

Manipulation-consistency for basing includes more powders, which improves all of the cement properties

Properties

Physical-excellent thermal and electrical insulation

Chemical-much more resistant to dissolution than cement liners

    Polycarboxylate and glass ionomer cements are mechanically and chemically adhesive to tooth structure

    Solubility of all cement bases is lower than cement liners if they are mixed at higher powder- to-liquid ratios

Mechanical- much higher compressive strengths (12,000 to 30,000 psi)
  
 Light-cured hybrid glass ionomer cements are the strongest
    Zinc oxide-eugenol cements are the weakest

Biologic (see section on luting cements for details)

    Zinc oxide-eugenol cements are obtundent to the pulp
    Polycarboxylate and glass ionomer cements are kind to the pulp
 

Model. Cast. and Die Materials


Applications
- Gold casting, porcelain and porcelain-fused–to metal fabrication procedures
- Orthodontic and pedodontic appliance construction
- Study models for occlusal records


Terms
a. Models-
replicas of hard and soft tissues for study of dental symmetry
b. Casts-working replicas of hard and soft tissues for use in the fabrication of appliances or restorations
c. Dies :-  working replicas of one tooth (or a few teeth) used for the fabrication of a restoration
d. Duplicates-second casts prepared from original  casts


Classification by materials

a Models :- (model plaster or orthodontic stone; gypsum product)
b. Stone casts (regular stone; gypsum product)
c. Stone dies (diestone; gypsum product)-may electroplated
d. Epoxy dies (epoxy polymer)-abrasion-resistant dies

Physical reaction-cooling causes reversible hardening

Chemical reaction-irreversible reaction during setting

Explore by Exams