NEET MDS Lessons
Dental Materials
COMPOSITE RESINS
Applications / Use
- Anterior restorations for aesthetics (class III, IV, V, cervical erosion abrasion lesions)
- Low-stress posterior restorations (small class I, II)
- Veneers
- Cores for cast restorations
- Cements for porcelain restorations
- Cements for acid-etched Maryland bridges
- Repair systems for composites or porcelains
Polymerization--reaction of small molecules (monomers) into very large molecules (polymers)
Cross-linking-tying together of polymer molecules by chemical reaction between the molecules to produce a continuous three-dimensional network
Structure of gypsum products
Components
a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)
CAD/CAM Restorations
Applications-inlays, onlays, veneers, crowns, bridges, implants, and implant prostheses
Stages of fabrication
CSD-computerized surface digitization
CAD-computer-aided (assisted) design
CAM-computer-aided (assisted) machining
CAE-computer-aided esthetics (currently theoretic)
CAF-computer-aided finishing or polishing (which are currently theoretic steps)
Classification
Chairside or in-office systems
(1) Cerec (Siemens system)-inlays, onlays, veneers
(2) Sopha (Duret system)-inlays, onlays (and Crowns)
Laboratory systems
(1) DentiCAD (Rekow system)-inlay, onlays, veneers, crowns
(2) Cicero (Elephant system)-porcelain fused-to-metal crowns
Materials
a. Feldspathic oorcelains (Vita)
b. Machinable ceramics (Dicor MGC)
c. Metal alloys limited use)
Cementing
- Etching enamel and/or dentin for micromechanical retention
- Bonding agent for retention to etched surface
- Composite as a luting cement for reacting chemically with bonding agent and with silanated surface of restoration
- Silane for bonding to etched ceramic (or metal) restorations and to provide chemical reaction
- Hydrofluoric acid etching to create spaces for micromechanical retention on surface or restoration
Properties
1. Physical properties
a. Thermal expansion coefficient well matched to tooth structure
b. Good resistance to plaque adsorption or retention
2. Chemical properties-not resistant to acids and should be protected from APF
3. Mechanical properties
a. Excellent wear resistance (but may abrade opponent teeth)
b. Some wear of luting cements but self-limiting
c. Excellent toothbrush abrasion
4. Biologic properties-excellent properties
WETTABILITY
To minimise the irregularities on the investment & the casting a wetting agent can be used .
FUNCTIONS OF A WETTING AGENT
1 . Reduce contact angle between liquid & wax surface .
2 .Remove any oily film left on wax pattern .
Physical reaction-cooling causes reversible hardening
Chemical reaction-irreversible reaction during setting
Lost Wax Process
The lost wax casting process is widely used as it offers asymmetrical casting withnvery fine details to be manufactured relatively inexpensively. The process involves producing a metal casting using a refractory mould made from a wax replica pattern.
The steps involved in the process or the lost wax casting are:
1 . Create a wax pattern of the missing tooth / rim
2 . Sprue the wax pattern
3 . Invest the wax pattern
4 . Eliminate the wax pattern by burning it (inside the furnace or in hot water). This will create a mould.
5 . Force molten metal into the mould - casting.
6 . Clean the cast.
7 . Remove sprue from the cast
8 . Finish and polish the casting on the die .
The lost-wax technique is so named because a wax pattern of a restoration is invested in a ceramic material, then the pattern is burned out ("lost") to create a space into which molten metal is placed or cast. The entire lost-wax casting process .
Wax pattern removal:
Sprue former can be used to remove the pattern. If not the pattern is removed with a sharp probe. Then the sprue former is attached to it. The pattern should be removed directly in line with the principle axis of the tooth or the prepared cavity. Any rotation of the pattern will distort it. Hollow sprue pin is advisable because of its greater retention to the pattern.
Suspension liners
Applications
o Dentin lining under amalgam restorations
o Stimulation of reparative dentin formation
Components
-Calcium hydroxide powder
-Water
-Modifiers
Manipulation
Used as W/P or pastes Paint thin film on dentin → Use forced air for 15 to 30 seconds to dry → Film is thicker (15 µm) than varnishes → Do not use on enamel or cavosurface margins
Properties
Physical
-Electrically insulating barrier
-Too thin to be thermally insulating
Chemical
-High basicity for calcium hydroxide (pH is II)
-Dissolves readily in water and should not be used at exposed cavosurface margins or gaps may form
Mechanical - weak film
Biologic - calcium hydroxide dissolves, diffuses, and stimulates odontoblasts to occlude dentin tubules below cavity preparation