NEET MDS Lessons
Dental Materials
Waxes
Many different waxes are used in dentistry. The composition, form, and color of each wax are designed to facilitate its use and to produce the best possible results.
Applications
o Making impressions
o Registering of tooth or soft tissue positions
o Creating restorative patterns for lab fabrication
o Aiding in laboratory procedures
Classification
a. Pattern waxes-inlay, casting, and baseplate waxes
b. Impression waxes-corrective and biteplate waxes
c. Processing waxes-boxing, utility, and sticky waxes
Types
1) Inlay wax-used to create a pattern for inlay, onlay or crown for subsequent investing and casting in a metal alloy.
2) Casting wax-used to create a pattern for metallic framework for a removable partial denture
3) Baseplate wax-used to establish the vertical dimension. plane of occlusion. and initial arch form of a complete denture
4) Corrective impression wax-used to form a registry pattern of soft tissues on an impression
5) Bite registration wax-used to form a registry pattern for the occlusion of opposing models or casts
6) Boxing wax-used to form a box around an impression before pouring a model or cast
7) Utility wax -soft pliable adhesive wax for modifying appliances, such as alginate impression trays
8) Sticky wax-sticky when melted and used to temporarily adhere pieces of metal or resin in laboratory procedures
Components
a. Base waxes-hydrocarbon (paraffin) ester waxes
b. Modifier waxes-carnauba, ceresin, bees wax, rosin, gum dammar, or microcrystalline waxes
c. Additives-colorants
Reaction-waxes are thermoplastic
Properties
Physical
a. High coefficients of thermal expansion and contraction
b. Insulators and so, cool unevenly; should be waxed in increments to allow heat dissipation
Chemical
a. Degrade prematurely if overheated
b. Designed to degrade into CO2and H2Oduring burnout
Mechanical-stiffness, hardness, and strength depend on modifier waxes used
Solution Liners (Varnishes)
Applications
o Enamel and dentin lining for amalgam restorations
o Enamel and dentin lining for cast restorations that are used with non adhesive cements
o Coating over materials that are moisture sensitive during setting
Components of copal resin varnish
o 90% solvent mixture (e.g., chloroform, acetone, and alcohol)
o 10% dissolved copal resin
Reaction
Varnish sets physically by drying Solvent loss occurs in 5 to 15 seconds (a film forms the same way as drying fingernail polish)
Manipulation
Apply thin coat over dentin. enamel. And margins of the cavity preparation Dry lightly with air for 5 seconds Apply a second thin coat Final thickness is 1 to 5 µ.m
Properties
o Physical
Electrically insulating barrier that prevents shocks. Too thin to be thermally insulating. Decreases degree of percolation attributable to thermal expansion
o Chemical
Forms temporary barrier that prevents microleakage into dentinal tubules until secondary dentin formation occurs. Decreases initial tendency for electrochemical corrosion
o Mechanical
Very weak and brittle film that has limited lifetime
Film adheres to smear layer
Components
a. Fillers added to most to control shrinkage
b. Matrix
Properties of Acrylic Resins.
- They have a low thermal conductivity. These resins are not easily washed out by the acids of the oral cavity (low solubility). Acrylic resins are also resilient, which allows them to be used in stress-bearing areas.
- Acrylic resins exhibit a moderate shrinkage of from 3 to 8 percent. This shrinkage and low marginal strength can lead to marginal leakage. Acrylic resins have a low resistance to wear. Acrylic resins cannot be used over a zinc oxide and eugenol-type base because eugenol interferes with the acrylic curing process.
- Mixing. Insufficient mixing will cause an uneven color or streaks in the mixture. Overmixing will cause the material to harden before it can be placed
- Poor distortion resistance at higher temperatures, therefore dentures should not be cleaned in hot water
- Good resistance to color change
- Absorbs water and must be kept hydrated (stored in water when not in mouth) to prevent dehydration cycling and changes in dimensions
- Not resistant to strong oxidizing agents
- Low strength; however, flexible, with good fatigue resistance
- Poor scratch resistance; clean tissue-bearing surfaces of denture with soft brush and do not use abrasive cleaners
Properties-improve with filler content
Physical
Radiopacity depends on ions in silicate glass or the addition of barium sulfate (many systems radiolucent)
Coefficient of thermal expansion is 35 to 45 ppm/C and decreases with increasing filler content
Thermal and electrical insulators
Chemical
Water absorption is 0.5 % to 2.5% and increases with polymer level)
Acidulated topical fluorides (e.g., APF) tend to dissolve glass particles, and thus composites should be protected with petroleum jelly (Vaseline) during those procedures
Color changes occur in resin matrix with time because of oxidation, which produces colored by-products
Mechanical
Compressive strength is 45,000 to 60,000 lb/ in2, which is adequate
Wear resistance-improves with higher filler content, higher percentage of conversion in curing, and use of microfiller, but it is not adequate for some posterior applications
Surfaces rough from wear retain plaque and stain more readily
Biologic
Components may be cytotoxic, but cured composite is biocompatible as restorative filling material
Suspension liners
Applications
o Dentin lining under amalgam restorations
o Stimulation of reparative dentin formation
Components
-Calcium hydroxide powder
-Water
-Modifiers
Manipulation
Used as W/P or pastes Paint thin film on dentin → Use forced air for 15 to 30 seconds to dry → Film is thicker (15 µm) than varnishes → Do not use on enamel or cavosurface margins
Properties
Physical
-Electrically insulating barrier
-Too thin to be thermally insulating
Chemical
-High basicity for calcium hydroxide (pH is II)
-Dissolves readily in water and should not be used at exposed cavosurface margins or gaps may form
Mechanical - weak film
Biologic - calcium hydroxide dissolves, diffuses, and stimulates odontoblasts to occlude dentin tubules below cavity preparation
Mercury hygiene
- Do not contact mercury with skin
- Clean up spills to minimize mercury vaporization
- Store mercury or precapsulated products in tight containers
- Only triturate amalgam components-in tightly- sealed capsules
- Use amalgam with covers
- Store spent amalgam under water or fixer in a tightly sealed jar
- Use high vacuum suction during amalgam alloy placement, setting, or removal when mercury may be vaporized
- Polishing amalgams generally causes localized melting of silver-mercury phase with release of mercury vapor, so water cooling and evacuation must be used