NEET MDS Lessons
Dental Materials
Denture Liners
Use - patients with soft tissue irritation
Types
Long-term liners (soft liners)-used over a period of months for patients with severe undercuts or continually sore residual ridges
Short-term liners (tissue conditioners)-used to facilitate tissue healing over several days
Structure
Soft liners-plasticized acrylic copolymers or silicone rubber
Tissue conditioners-PEMA plasticized with ethanol and aromatic esters
Properties
Liners flow under low pressure, allowing adaptation to soft tissues, but are elastic during chewing forces.
Low initial hardness, but liner becomes harder as plasticizers are leached out during intraoral use
Some silicone rubber liners support growth of yeasts
Classification of Dental amalgam
1. By powder particle shape .
- Irregular (comminuted, filing, or lathecut)
- Spherical (spherodized)
- Blends (e.g., irregular-irregular, irregularspherical, or spherical-spherical)
2. By total amount of copper
- Low-copper alloys (e.g., conventional, traditional); <5% copper
- High-copper alloys (e,g. corrosion resistant); 12% to 28% copper
3.By presence of zinc
Examples
- Low-copper, irregular-particle alloy-silver (70%)-tin (26%)-copper (4%)
- High-copper, blended-particles alloy-irregular particles, silver (70%) –tin (26%) -Copper (4%); spherical particles, silver (72%)-copper (28%)
- High-copper, spherical-particles alloy-silver (60%) - tin (27%)-copper (13%)
ZINC OXIDE AND EUGENOL
This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.
Chemical Composition.
The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set.
Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light.
Physical Properties.
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi.
CLINICAL USES OF ZINC OXIDE AND EUGENOL
Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp.
Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures.
Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated.
Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive.
Casting of glass or ceramic
A castable ceramic is prepared in a similar manner as metal cast preparation .
Glass is heated to 1360 degrees & then cast.
Phosphate bonded investments are used for this purpose .
Physical reaction-cooling causes reversible hardening
Chemical reaction-irreversible reaction during setting
Acrylic Appliances
Use - space maintenance or tooth movement for orthodontics and pediatric dentistry
1. Components
a. Powder-PMMA powder. peroxide initiator, and pigments
b. Liquid-MMA monomer, hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)
2. Reaction
PMMA powder makes mixture viscous for manipulation before curing . Chemical accelerators cause decomposition of benzoyl peroxide into free radicals that initiate polymerization of monomer . New PMMA is formed into a matrix that surrounds PMMA powder. Linear shrinkage of 5% to 7% during setting. but dimensions of appliances are not critical
CLEANING AND PICKLING ALLOYS
The surface oxidation or other contamination of dental alloys is a troublesome occurrence. The oxidation of base metals in most alloys can be kept to a minimum or avoided by using a properly adjusted method of heating the alloy and a suitable amount of flux when melting the alloy . Despite these precautions, as the hot metal enters the mold, certain alloys tend to become contaminated on the surface by combining with the hot mold gases, reacting with investment ingredients, or physically including mold particles in the metal surface. The surface of most cast, soldered, or otherwise heated metal dental appliances is cleaned by warming the structure in suitable solutions, mechanical polishing, or other treatment of the alloy to restore the normal surface condition.
Surface tarnish or oxidation can be removed by the process of pickling. Castings of noble or high-noble metal may be cleaned in this manner by warming them in a 50% sulfuric acid and water solution . . After casting, the alloy (with sprue attached) is placed into the warmed pickling solution for a few seconds. The pickling solution will reduce oxides that have formed during casting. However, pickling will not eliminate a dark color caused by carbon deposition
The effect of the solution can be seen by comparing the submerged surfaces to those that have still not contacted the solution. the ordinary inorganic acid solutions and do not release poisonous gases on boiling (as sulfuric acid does). In either case, the casting to be cleaned is placed in a suitable porcelain beaker with the pickling solution and warmed gently, but short of the boiling point. After a few moments of heating, the alloy surface normally becomes bright as the oxides are reduced. When the heating is completed, the acid may be poured from the beaker into the original storage container and the casting is thoroughly rinsed with water. Periodically, the pickling solution should be replaced with fresh solution to avoid excessive contamination.
Precautions to be taken while pickling
With the diversity of compositions of casting alloys available today, it is prudent to follow the manufacturer's instructions for pickling precisely, as all pickling solutions may not be compatible with all alloys. Furthermore, the practice of dropping a red-hot casting into the pickling solution should beavoided. This practice may alter the phase structure of the alloy or warp thin castings, and splashing acid may be dangerous to the operator. Finally, steel or stainless steel tweezers should not be used to remove castings from the pickling solutions. The pickling solution may dissolve the tweezers and plate the component metals onto the casting. Rubber-coated or Teflon tweezers are recommended for this purpose.