NEET MDS Lessons
Dental Materials
Dental Implants
Applications/Use
Single-tooth implants
Abutments for bridges (freestanding, attached to natural teeth)
Abutments for over dentures
Terms
Subperiosteal- below the periosteum -but above the bone (second most frequently used types)
Intramucosal-within the mucosa
Endosseous into the bone (80%of all current types)
Endodontics-through the root canal space and into the periapical bone
Transosteal-through the bone
Bone substitutes -replace. Long bone
Classification by geometric form
Blades
Root forms
Screws
Cylinders
Staples
Circumferential
Others
Classification by materials type
Metallic-titanium, stainless steel, and .chromium cobalt
Polymeric-PMMA
Ceramic hydroxyapatite, carbon, and sapphire
Classification by attachment design
Bioactive surface retention by osseointegration
Nonative porous surfaces for micromechanical retention by osseointegration
Nonactive, nonporous surface for ankylosis. By osseointegration
Gross mechanical retention designs (e.g.. threads, screws, channels, or transverse holes)
Fibrointegration by formation of fibrous tissue capsule
Combinations of the above
Components
a. Root (for. osseointegration)
b. Neck (for epithelial attachment and percutancaus sealing)
c. Intramobile elements (for shock absorption)
d. Prosthesis (for dental form and function)
Manipulation
a. Selection-based on remaining bone architecture and dimensions
b. Sterilization-radiofrequency glow discharge leaves biomaterial surface uncontaminated and sterile; autoclaving or chemical sterilization is contraindicated for some designs
Properties
1. Physical-should have low thermal and electrical conductivity
2. Chemical
a. Should be resistant to electrochemical corrosion
b. Do not expose surfaces to acids (e.g.. APF fluorides).
c. Keep in mind the effects of adjunctive therapies (e.g., Peridex)
3. Mechanical
a. Should be abrasion resistant and have a high modulus
b. Do not abrade during scaling operations (e.g.with metal scalers or air-power abrasion systems like Prophy iet)
4. Biologic-depend on osseointegration and epithelial attachment
Investment Materials
Investment is mold-making material
Applications
a. Mold-making materials for casting alloys
b. Mold-making materials for denture production
Classification
a. Gypsum-bonded investments (based on gypsum products for matrix)
b. Phosphate-bonded investments
c. Silicate-bonded investments
Components
a. Liquid-water or other reactant starts formation of matrix binder by reacting with reactant powder
b. Powder-reactant powder, filler, or modifiers
Manipulation
a. P/L mixed and placed in container around wax pattern
b. After setting, the investment is heated to eliminate the wax pattern in preparation for casting
FLUXING
To prevent oxidation of gold alloys during melting always use a reducing flux .
Boric acid & borax are used .
Classification
Rigid impression materials
(1) Plaster
(2) Compound
(3) Zinc oxide-eugenol
Flexible hydrocolloid impression materials
(I) Agar-agar (reversible hydrocolloid)
(2) Alginate (irreversible hydrocolloid)
Flexible, elastomeric, or rubber impression materials
(1) Polysulfide rubber (mercaptan rubber)
(2) Silicone rubber (condensation silicone)
(3) Polyether rubber
(4) Polyvinyl siloxane (addition silicone)
I . Procedure for single casting :
A 2.5 mm sprue former is recommended
for molar crowns 2.0 mm for premolars & partial coverage crowns .
II . Procedure for multiple casting :
Each unit is joined to a runner bar .
A single sprue feeds the runner bar
4 . SPRUE FORMER DIRECTION
Sprue Should be directed away from the delicate parts of the pattern
It should not be at right angles to a flat surface .(leads to turbulance porosity .)
Ideal angulation is 45 degrees .
5 . SPRUE FORMER LENGTH
Depends on the length of casting ring .. Length of the Sprue former should be such that it keeps the wax pattern about 6 to 8 mm away from the casting ring. Sprue former should be no longer than 2 cm. The pattern should be placed as close to the centre of the ring as possible.
Significance
Short Sprue Length:
The gases cannot be adequately vented to permit the molten alloy to fill the ring completelyleading to Back Pressure Porosity.
Long Sprue Length:
Fracture of investment, as mold will not withstand the impact force of the entering molten alloy.
Top of wax should be adjusted for :
6 mm for gypsum bonded investments .
3 -4 mm for phosphate bonded investments .
TYPES OF SPRUES
I . - Wax . II . Solid
- Plastic . Hollow
- Metal .
CRUCIBLE FORMER
It serves as a base for the casting ring during investing .Usually convex in shape.
May be metal , plastic or rubber .
Shape depends on casting machine used .
Modern machines use tall crucible to enable the pattern to be positioned near the end of the casting machine .
Mouth Protectors
Use - to protect against effects of blows to chin, top of the head, the face, or grinding of the teeth
Types
o Stock protectors-least desirable because of poor fit
o Mouth-formed protectors-improved fit compared with stock type
o Custom-made protectors-preferred because of durability. low speech impairment, and comfort
I. Components
a. Stock protectors-thermoplastic copolymer of PYA-PE (polyvinyl acetate-polyethylene copolymer)
b. Mouth-formed protectors-thermoplastic copolymer
c. Custom-made protectors- thermoplastic copolymer, rubber. or polyurethane
2. Reaction-physical reaction of hardening during cooling
3. Fabrication
Alginate impression made of maxillary arch. High-strength stone cast poured immediately. Thermoplastic material is heated in hot water and vacuum-molded to cast .
Mouth protector trimmed to within ½ inch of labial fold, clearance provided at the buccal and labial frena, and edges smoothed by flaming. Gagging, taste, irritation. and impairment of speech are minimized with properly fabricated appliances
4. Instructions for use
a. Rinse before and after use with cold water
b. Clean protector occasionally with soap and cool water
c. Store the protector in a rigid container
d. Protect from heat and pressure during storage
e. Evaluate protector routinely for evidence of deterioration
Properties
1. Physical-thermal insulators
2. Chemical-absorbs after during use
3. Mechanical-tensile strength, modulus, and hardness decrease after water absorption, but elongation, tear strength, and resilience increase
4. Biologic-nontoxic as long as no bacterial, fungal, or viral growth occurs on surfaces between uses