NEET MDS Lessons
Dental Materials
Bonding Agents
Applications-composites, resin-modified gIass ionomers, ceramic bonded to enamel restorations, veneers, orthodontic brackets, and desensitizing dentin by covering exposed tubules (Maryland bridges, composite and ceramic repair systems, amalgams and amalgam repair, and pinned amalgams)
Definitions;-
Smear layer - Layer of compacted debris on enamel and/or dentin from the cavity preparation process that is weakly held to the surface (6 to 7 MPa) , and that limits bonding agent strength if not removed
Etching (or, conditioning)- smear layer removal and production of microspaces for micromechanical bonding by dissolving –minor amounts of surface hydroxyapatite crystals
Priming..- micromechanical (and chemical) bonding to the microspaces created by conditioning step.
Conditioning/priming agent-agent that accomplishes both actions
Bonding- formation of resin layer that connect the primed surface to the overlying restoration (e.g., composite) .. –
Enamel bonding System-for bonding to enamel (although dentin bonding may be a Second step)
Dentin bonding system for bonding to dentin (although enamel bonding may have been a first step)
• First-generation dentin bonding system for bonding to smear layer
• New-generation dentin bonding system- for removing smear layer and etching intertubular dentin to allow primer and/or bonding agent to diffuse into spaces between collagen and form hybrid zone
Enamel and dentin bonding system-for bonding to enamel and dentin surfaces with the same procedures
Amalgam bonding system for bonding to enamel, dentin, and amalgam, dentin and amalgam during an amalgam placement procedure or for amalgam repair
Universal bonding system-for bonding to enamel, dentin, amalgam, porcelain , or any other substrate intraorally that may be necessary for a restorative procedure using the same set of procedures and materials
Types
Enamel bonding systems
Dentin bonding systems
Amalgam bonding systems
Universal bonding systems
Structure
o Components of bonding systems
o Conditioning agent-mineral or organic acid
Enamel only 37% phosphoric acid
Dentin only or enamel and .dentin---37% phosphoric acid, citric acid, maleic acid, or nitric acid
o Priming agent
Hydrophobic-solvent-soluble, light cured monomer system
Hydrophilic-water-soluble, light-cured monomer system
Bonding agent
BIS-GMA-type monomer system
UDMA-type monomer system
Reaction
Bonding occurs primarily by intimate micromechanical retention with the relief created by the conditioning step
Chemical bonding is possible but is not recognized as contributing significantly to the overall bond strength
Manipulation-follow manufacturer's directions
Properties
Physical-thermal expansion and contraction may create fatigue stresses that debond the interface and permit micro leakage
Chemical-water absorption into the bonding agent may chemically alter the bonding
Mechanical-mechanical stresses may produce fatigue that debonds the interface and permits microleakage
Enamel bonding-adhesion occurs by macrotags (between enamel prisms) and microtags (into enamel prisms) to produce micromechanical retention
Dentin bonding-adhesion occurs by penetration of smear layer and formation of microtags into intertubular dentin to produce a hybrid zone (interpenetration zone or diffusion zone) that microscopically intertwines collagen bundles and bonding agent polymer
Biologic
Conditioning agents may be locally irritating if they come into contact with soft tissue
Priming agents (uncured), particularly those based on HEMA, may be skin sensitizers after several contacts with dental personnel
Protect skin on hands and face from inadvertent contact with unset materials and/ or their vapors
HEMA and other priming monomers may penetrate through rubber gloves in relatively short times (60 to 90 seconds)
Solution Liners (Varnishes)
Applications
o Enamel and dentin lining for amalgam restorations
o Enamel and dentin lining for cast restorations that are used with non adhesive cements
o Coating over materials that are moisture sensitive during setting
Components of copal resin varnish
o 90% solvent mixture (e.g., chloroform, acetone, and alcohol)
o 10% dissolved copal resin
Reaction
Varnish sets physically by drying Solvent loss occurs in 5 to 15 seconds (a film forms the same way as drying fingernail polish)
Manipulation
Apply thin coat over dentin. enamel. And margins of the cavity preparation Dry lightly with air for 5 seconds Apply a second thin coat Final thickness is 1 to 5 µ.m
Properties
o Physical
Electrically insulating barrier that prevents shocks. Too thin to be thermally insulating. Decreases degree of percolation attributable to thermal expansion
o Chemical
Forms temporary barrier that prevents microleakage into dentinal tubules until secondary dentin formation occurs. Decreases initial tendency for electrochemical corrosion
o Mechanical
Very weak and brittle film that has limited lifetime
Film adheres to smear layer
CASTING
Melting & Casting Technique Melting & Casting requires Heat source to melt the alloy Casting force, to drive the alloy into the mould
Casting Torch Selection Two type of torch tips: Multi-orifice Single-orifice Multi-orifice tip is widely used for metal ceramic alloys. Main advantage is distribution of heat over wide area for uniform heating of the alloy. Single-orifice tip concentrate more heat in one area.Three fuel sources are used for Casting Torch; Acetylene ,Natural Gas ,Propane
CASTING CRUCIBLES
Four types are available ;
1) Clay .
2) Carbon .
3) Quartz .
4) Zirconia –Alumina .
Casting Machines
It is a device which uses heat source to melt the alloy casting force .
Heat sources can be :
1) Reducing flame of a torch .( conventional alloys & metal ceramic alloys )
2) Electricity .(Base metal alloys )
Advantages of electric heating :
-heating is evenly controlled .
-minimal undesirable changes in the alloy composition .
- Appropriate for large labs .
Disadvantage :
Expensive .
Casting machines use :
1) Air pressure .
2) Centrifugal force .
3) Evacuation technique .
Alloys can be melted by :
1) Alloy is melted in a separate crucible by a torch flame & is cast into the mold by centrifugal force .(centrifugal C M )
2) Alloy is melted by resistance heating or by induction furnace & then cast centrifugally by motor or spring action (springwound CM electrical resistance )
3) Alloy is melted by induction heating cast into mold centrifugally by motor or spring action .(Induction CM )
4) Alloy is vacum melted by an argon atmosphere
Torch melting / Centrifugal casting machine
Electrical resistance /Heated casting machine
Melting of the alloy should be done in a graphite or ceramic crucible .
Advantage :
-Oxidation of metal ceramic restorations on
overheating is prevented .
-Help in solidification from tip of the casting to the button surface .
Induction casting machine
Commonly used for melting base metal alloys.
Advantage :
- Highly efficient .
- Compact machine withlow power consumption
-No pre heating needed ,
- safe & reliable.
Direct current arc melting machine
A direct current arc is produced between two electrodes :
The alloy & the water cooled tungsten electrode .Temp used is 4000 degrees .
Disadvanage :
High risk of overheating the alloy .
Vacuum or pressure assisted casting machine
Molten alloy is drawn into the evacuated mold by gravity or vacuum & subjected to aditional pressure
For Titanium & its alloys vacuum heated argon pressure casting machines are used .
Accelerated casting method
This method reduces the time of both bench set of the investment & burnout .
Uses phosphate bonded investments which uses 15 mnts for bench set & 15mnts for burnout by placing in a pre – heated furnace to 815 degrees .
Effect of burnout on gypsum bonded investments
Rate of heating has influence on smoothness & on overall dimensions of the investment
Rapid heating causes cracking & flaking which can cause fins or spines .
Avoid heating gypsum bonded investment above 700 degrees .Complete the wax elimination below that temp .
Effect of burnout on phosphate bonded investments
Usual burnout temp is 750 -1030 degrees.
Although they are strong they are brittle too .
Since the entire process takes a long time two stage burnout & plastic ring can be used .
POLISHING MATERIALS
1 Tin Oxide. Tin oxide is used in polishing teeth and metal restorations. Tin oxide is a fine, white powder that is made into a paste by adding water or glycerin.
2. Pumice. Pumice is used as an abrasive and polishing agent for acrylic resins, amalgams, and gold. It consists mainly of complex silicates of aluminum, potassium, and sodium. Two grades--flour of pumice and coarse pumice--are listed in the Federal Supply Catalog.
3. Chalk (Whiting). Chalk is used for polishing acrylic resins and metals. It is composed primarily of calcium carbonate.
4.Tripoli. Tripoli is usually used for polishing gold and other metals. It is made from certain porous rocks.
5. Rouge (Jeweler's). Rouge is used for polishing gold and is composed of iron oxide. It is usually in cake or stick form.
6. Zirconium Silicate. Zirconium silicate is used for cleaning and polishing teeth. It may be mixed with water or with fluoride solution for caries prevention treatment. For full effectiveness, instructions must be followed exactly to obtain the proper proportions of powder to liquid.
POLYCARBOXYLATE CEMENT
Use:. The primary use of polycarboxylate cement is as a cementing medium of cast alloy and porcelain restorations. In addition, it can be used as a cavity liner, as a base under metallic restorations, or as a temporary restorative material.
Clinical Uses
Polycarboxylate cement is used in the same way as zinc phosphate cement, both as an intermediate base and as a cementing medium.
c. Chemical Composition.
(1) Powder:. It generally contains zinc oxide, 1 to 5 percent magnesium oxide, and 10 to 40 percent aluminum oxide or other reinforcing fillers. A small percentage of fluoride may be included.
(2) Liquid. Polycarboxylate cement liquid is approximately a 40 percent aqueous solution of polyacrylic acid copolymer with other organic acids such as itaconic acid. Due to its high molecular weight, the solution is rather thick (viscous).
d. Properties.
The properties of polycarboxylate cement are identical to those of zinc phosphate cement with one exception. Polycarboxylate cement has lower compressive strength.
e. Setting Reactions:
The setting reaction of polycarboxylate cement produces little heat. This has made it a material of choice. Manipulation is simpler, and trauma due to thermal shock to the pulp is reduced. The rate of setting is affected by the powder-liquid ratio, the reactivity of the zinc oxide, the particle size, the presence of additives, and the molecular weight and concentration of the polyacrylic acid. The strength can be increased by additives such as alumina and fluoride. The zinc oxide reacts with the polyacrylic acid forming a cross-linked structure of zinc polyacrylate. The set cement consists of residual zinc oxide bonded together by a gel-like matrix.
Precautions.
The following precautions should be observed.
o The interior of restorations and tooth surfaces must be free of saliva.
o The mix should be used while it is still glossy, before the onset of cobwebbing.
o The powder and liquid should be stored in stoppered containers under cool conditions. Loss of moisture from the liquid will lead to thickening.
Suspension liners
Applications
o Dentin lining under amalgam restorations
o Stimulation of reparative dentin formation
Components
-Calcium hydroxide powder
-Water
-Modifiers
Manipulation
Used as W/P or pastes Paint thin film on dentin → Use forced air for 15 to 30 seconds to dry → Film is thicker (15 µm) than varnishes → Do not use on enamel or cavosurface margins
Properties
Physical
-Electrically insulating barrier
-Too thin to be thermally insulating
Chemical
-High basicity for calcium hydroxide (pH is II)
-Dissolves readily in water and should not be used at exposed cavosurface margins or gaps may form
Mechanical - weak film
Biologic - calcium hydroxide dissolves, diffuses, and stimulates odontoblasts to occlude dentin tubules below cavity preparation
Principles of cutting, polishing, and surface cleaning
- Surface mechanics for materials
Cutting-requires highest possible hardness materials to produce cutting
Finishing-requires highest possible hardness materials to produce finishing, except at margins of restorations where tooth structure may be inadvertently affected
Polishing- requires materials with Mohs ./ hardness that is 1 to 2 units above that of substrate
Debriding-requires materials with Mohs hardness that is less than or equal to that of substrate to prevent scratching
- Factors affecting cutting, polishing. and surface cleaning
- Applied pressure
- Particle size of abrasive
- Hardness of abrasive
- Hardness of substrate
- Precautions
- During cutting heat will build up and change the mechanical behavior of the substrate from brittle to ductile and encourage smearing
- Instruments may transfer debris onto the cut surface from their own surfaces during cutting, polishing, or cleaning operations (this is important for cleaning implant surfaces)