Talk to us?

Dental Materials - NEETMDS- courses
NEET MDS Lessons
Dental Materials

Manipulation

Mixing

o    P/L types mixed in bowl (plaster and alginate)
o    Thermoplastic materials not mixed (compound and agar-agar)
o    Paste/paste types hand mixed on pad (zinc oxide-eugenol, polysulfide rubber, silicone rubber, polyether rubber. and poly-vinylsiloxane)
o    Paste/paste mixed through a nozzle on an auto-mixing gun (poly-vinylsiloxane)

Placement

o    Mixed material carried in tray to mouth (full arch tray, quadrant tray. or triple tray)
o    Materials set in mouth more quickly because of higher temperature

Removal - rapid removal of impression encourages deformation to take place elastically rather than permanently (elastic deformation requires about 20 minutes)

Cleaning and disinfection of impressions 

Finishing and Polishing

Remove oxygen-inhibited layer .Use stones or carbide burs for gross reduction.Use highly fluted carbide burs or special diamonds for fine reduction.Use aluminum oxide strips or disks for finishing. Use fine aluminum oxide finishing pastes. Microfills develop smoothest finish because of small size of filler particles
 

Root canal sealers

Applications

Cementation of silver cone gutta-percha point
Paste filling material

Types

Zinc oxide-eugenol cement types
Noneugenol cement types
Therapeutic cement types

properties

Physical-radiopacity
Chemical-insolubility
Mechanical-flow; tensile strength
Biologic-inertness

Gingival tissue packs

Application-provide temporary displacement of gingival tissues
Composition-slow setting zinc oxide-eugenol cement mixed with cotton twills for texture and strength


Surgical dressings
1.Application-gingival covering after periodontal surgery
2. Composition-modified zinc oxide-eugenol cement (containing tannic, acid. rosin, and various oils)

Orthodontic cements

Application-cementation of orthodontic bands
Composition-zinc phosphate cement 

Manipulation

Zinc phosphate types are routinely mixed with cold or frozen mixing slab to extend the working time
Enamel bonding agent types use acid etching for improved bonding
Band, bracket, or cement removal requires special care
 

Mechanical properties

1.  Resolution of forces

Uniaxial (one-dimensional) forces-compression, tension, and shear

Complex forces-torsion, flexion. And diametral

2. Normalization of forces and deformatations

Stress

 Applied force (or material’s resistance to force) per unit area

Stress-force/area (MN/m2)

Strain

Change in length per unit of length because of force

Strain-(L- Lo)/(Lo); dimensionless units

3. Stress-strain diagrams

Plot of stress (vertical) versus strain (horizontal)

  • Allows convenient comparison of materials
  • Different curves for compression, tension, and shear
  • Curves depend on rate of testing and temperature

4. Analysis of curves

  • Elastic behavior
    • Initial response to stress is elastic strain
    • Elastic modulus-slope of first part of curve and represents stiffness of material or the resistance to deformation under force
    • Elastic limit (proportional limit)- stress above which the material no longer behaves totally elastically
    • Yield strength-stress that is an estimate of the elastic limit at 0.002 permanent strain
    • Hardness-value on a relative scale that estimates the elastic limit in terms of a material’s resistance to indentation (Knoop hardness scale, Diamond pyramid, Brinnell, Rockwell hardness scale, Shore A hardness scale, Mohs hardness scale

 

  • Resilience-area under the stress strain curve up to the elastic limit (and it estimates the total elastic energy that can be absorbed before the onset of plastic deformation)
  • Elastic and plastic behavior
  • Beyond the stress level of the elastic  limit, there is a combination of elastic  and plastic strain
  • Ultimate strength-highest stress  reached before fracture; the ultimate compressive strength is greater than the ultimate shear strength and the ultimate tensile strength
  • Elongation (percent elongation)- percent change in length up to the point of fracture = strain x 100%
  • Brittle materials-<5% elongation at fracture
  • Ductile materials->5% elongation  at fracture
  • Toughness-area under the stress strain  curve up to the point of fracture (it estimates the total energy absorbed up to fracture)
  • Time-dependent behavior

the faster a stress is applied, the more likely a material is to store the energy elastically and not plastically

  • Creep-strain relaxation
  • Stress relaxation

Denture Liners

Use - patients with soft tissue irritation

Types

Long-term liners (soft liners)-used over a period of months for patients with severe undercuts or continually sore residual ridges

Short-term liners (tissue conditioners)-used to facilitate tissue healing over several days

Structure

Soft liners-plasticized acrylic copolymers or silicone rubber

Tissue conditioners-PEMA plasticized with ethanol and aromatic esters

Properties

Liners flow under low pressure, allowing adaptation to soft tissues, but are elastic during chewing forces. 
Low initial hardness, but liner becomes  harder as plasticizers are leached out during intraoral use 
Some silicone rubber liners support growth of yeasts
 

Explore by Exams