Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Dental Solders

Applications-bridges and orthodontic appliances

Terms

Soldering -joining operation using filler metal that melts below 500° C

Brazing -joining operation using filler metal that melts above 500°C

Welding-melting and alloying of pieces to be joined

Fluxing
 -Oxidative cleaning of area to be soldered
 - Oxygen scavenging to prevent oxidation of alloy being soldered
16- 650 -- 650 fineness solder to be used with 16-karat alloys; fineness refers to the gold content

Classification

a. Gold solders-bridges
b. Silver solders-gold-substitute bridges and orthodontic alloys

Structure of gold solders

Composition-lower gold content than of alloys being soldered

Manipulation-solder must melt below melting temperature of alloy

Properties

1. Physical-similar to alloys being joined
2. Chemical-more prone to chemical and electrochemical corrosion
3. Mechanical-similar to alloy  being joined
4. Biologic-similar to alloys being joined
 

Properties

I. Physical

a. Excellent thermal and electrical insulator
b. Very dense
c. Excellent dimensional stability
d. Good reproduction of fine detail of hard and soft tissues

2. Chemical

a. Heating will reverse the reaction (decompose the material into calcium sulfate hemihydrate, the original dry component)
b. Models, casts, and dies should be wet during grinding or cutting operations to prevent heating

3. Mechanical

a. Better powder packing and lower water contents at mixing lead to higher compressive strengths (plaster < stone < diestone)
b. Poor resistance to abrasion

4. Biologic

a. Materials are safe for contact with external - epithelial tissues
b. Masks should be worn during grinding or polishing operations that are likely to produce gypsum dust

Mercury hygiene

  • Do not contact mercury with skin
  • Clean up spills to minimize mercury vaporization
  • Store mercury or precapsulated products in tight containers
  • Only triturate amalgam components-in tightly- sealed capsules
  • Use amalgam with covers
  • Store spent amalgam under water or fixer in a tightly sealed jar
  • Use high vacuum suction during amalgam alloy placement, setting, or removal when mercury may be vaporized
  • Polishing amalgams generally causes localized melting of silver-mercury phase with release of mercury vapor, so water cooling and evacuation must be used

PHYSICAL PROPERTIES OF MATERIALS

Definite and precise terms are used to describe the physical properties of dental materials.

a. Hardness. Hardness is the measure of the resistance of a metal to indentation or scratching. It is an indication of the strength and wearability of an alloy or metal.

b. Ductility. Ductility is the measure of the capacity of a metal to be stretched or drawn by a pulling or tensile force without fracturing. This property permits a metal to be drawn into a thin wire.

c. Malleability. Malleability is the measure of the capacity of a metal to be extended in all directions by a compressive force, such as rolling or hammering. This property permits a metal to be shaped into a thin sheet or plate.

d. Flexibility and Elasticity. These terms differ in their technical definition but they are very closely related. Flexibility is the characteristic of a metal, which allows it to deform temporarily. The elasticity of a metal is used when it returns to its original shape when the load or force is removed.

e. Fatigue. Fatigue is the property of a metal to tire and to fracture after repeated stressing at loads below its proportional limit.

f. Structure (Crystalline or Grain Structure). Metals are crystalline and many of their physical properties depend largely upon the size and arrangement of their minute crystals called grains.

(1) Grain size. The size of the grains in a solidified metal depends upon the number of nuclei of crystallization present and the rate of crystal growth. In the practical sense, the faster a molten is cooled to solidification, the greater will be the number of nuclei and the smaller will be the grain size. Generally speaking, small grains arranged in an orderly fashion give the most desirable properties.

(2) Grain shape. The shape of the grains is also formed at the time of crystallization. If the metal is poured or forced into a mold before cooling, the grains will be in a flattened state. Metal formed by this method is known as cast metal. If the metal is shaped by rolling, bending, or twisting, the grains are elongated and the metal becomes a wrought wire.

g. Crushing Strength. Crushing strength is the amount of resistance of a material to fracture under compression.

h. Thermal Conductivity. Thermal conductivity is defined as the ability of a material to transmit heat or cold. A low thermal conductivity is desired in restorative materials used on the tooth whereas a high thermal conductivity is desirable where the material covers soft tissue.

ZINC OXIDE AND EUGENOL 

This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.

Chemical Composition.

The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set. 

Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light. 

Physical Properties. 
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi. 

CLINICAL USES OF ZINC OXIDE AND EUGENOL 

Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp. 

Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures. 

Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated. 

Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive. 
 

Casting Alloys

Applications-inlay, onlay,  crowns, and bridges

Terms

a. Precious-based on valuable elements
b. Noble or immune-corrosion-resistant element or alloy
c. Base or active-corrosion-prone alloy
d. Passive -corrosion resistant because of surface oxide film
e. Karat (24 karat is 100% gold; 18 karat is 75% gold)
f. Fineness (1000 fineness is I00% gold; 500 fineness is 50% gold)

Classification

High-gold alloys are > 75% gold or other noble metals

Type 1-    83% noble metals (e.g., in simple inlays)
Type II-≥78% noble metals (e.g.,in inlays and onlays)
Type IlI-≥75% noble metals (e.g., in crowns and bridges)
Type IV-≥75% noble metals (e.g., in partial dentures)

Medium-gold alloys are 25% to 75% gold or other noble metals

Low-gold alloys are <25% gold or other noble metals

Gold-substitute alloys arc alloys not containing gold

(1) Palladium-silver alloys-passive .because of mixed oxide film
(2) Cobalt-chromium alloys-passive because of Cr203 oxide film
(3) Iron-chromium alloys-passive because of Cr203 oxide film

Titanium alloys are based on 90% to 100% titanium ; passive because of TiO2 oxide film

Components of gold alloys

-    Gold contributes to corrosion resistance
-    Copper contributes to hardness and strength
-    Silver counteracts orange color of copper
-   Palladium increases melting point and hardness
-    Platinum increases melting point
-    Zinc acts as oxygen scavenger during casting

Manipulation

-    Heated to just beyond melting temperature for casting
o    Cooling shrinkage causes substantial contraction

Properties

Physical

-    Electrical and thermal conductors
-   Relatively low coefficient of thermal expansion

Chemical

-    Silver  content affects susceptibility to tarnish
-   Corrosion resistance  is attributable to nobility or passivation

Mechanical

-   High tensile and compressive strengths but relatively weak in thin sections, such as margins, and can be deformed relatively easily
-    Good wear resistance except in contact with Porcelain
 

Solution Liners (Varnishes)

Applications 

o    Enamel and dentin lining for amalgam restorations
o    Enamel and dentin lining for cast restorations that are used with non adhesive cements
o    Coating over materials that are moisture sensitive during setting

Components of copal resin varnish

o    90% solvent mixture (e.g., chloroform, acetone, and alcohol)
o    10% dissolved copal resin

 Reaction
 
Varnish sets physically by drying Solvent loss occurs in 5 to 15 seconds (a film forms the same way as drying fingernail polish)

Manipulation

Apply thin coat over dentin. enamel. And margins of the cavity preparation  Dry lightly with air for 5 seconds Apply a second thin coat Final thickness is 1 to 5 µ.m

Properties

o    Physical 

Electrically insulating barrier that prevents shocks. Too thin to be thermally insulating. Decreases degree of percolation attributable to thermal expansion

o    Chemical

Forms temporary barrier that prevents microleakage into dentinal tubules until secondary dentin formation occurs. Decreases initial tendency for electrochemical corrosion

o     Mechanical

Very weak and brittle film that has limited lifetime 
Film adheres to smear layer
 

Explore by Exams