Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Pit-and-Fissure Dental Sealants

Applications/Use

Occlusal surfaces of newly erupted posterior teeth
Labial surfaces of anterior teeth with fissures
Occlusal surfaces of teeth in older patients with reduced saliva flow (because low saliva increases the susceptibility to caries)

Types

Polymerization method

Self-curing (amine accelerated)
Light curing (light accelerated)

Filler content

Unfilled-most systems are unfilled because filler tends to interfere with wear away from self-cleaning occlusal areas(sealants are designed to wear away, except where there is no self-cleaning action a common misconception is that sealants should be wear resistant)


Components

Monomer-BIS-GMA with TEGDM diluent to facilitate flow into pits and fissures prior to cure
Initiator-benzoyl peroxide (in self-cured) and diketone (in light cured)
Accelerator-amine (In light cured)
Opaque filler-I % titanium dioxide. or other colorant to make the material detectable on tooth surfaces
Reinforcing filler-generally not added because wear resistance is not required within pits and fissures

Reaction-free radical reaction 

Manipulation

Preparation

Clean pits and fissures of organic debris. Do not apply fluoride before etching because it will tend to make enamel more acid resistant. Etch occlusal surfaces, pits, and fissures for 30 seconds (gel) or 60 seconds (liquid) with 37% phosphoric acid . Wash occlusal surfaces for 20 seconds. Dry etched area for 20 seconds with clean air spray. Apply sealant and polymerize

Mixing or dispensing

Self-cured-mix equal amounts of liquids in Dappen dish for 5 seconds with brush applicator. Light cured-dispense from syringe tips 
Placement

-pits, fissures, and occlusal surfaces  --> Allow 60 seconds for self-cured materials to set. 

Finishing

Remove unpolymerized and excess material .Examine hardness of sealant. Make occlusal adjustments where necessary in sealant; some sealant materials are self-adjusting

Properties

Physical

Wetting-low-viscosity sealants wet acid etched tooth structure the best

Mechanical

Wear resistance should not be too great because sealant should be able to wear off of  self-cleaning areas of tooth
Be careful to protect sealants during polishing procedures with air abrading units to prevent sealant loss

Clinical efficacy

Effectiveness is 100% if retained in pits and fissures .Requires routine clinical evaluation for resealing of areas of sealant loss attributable to poor retention .
Sealants resist effects of topical fluorides
 

SELECTION OF SPRUE 

1 . DIAMETER :
It should be approximately the same size of the thickest portion of the wax pattern .
Too small sprue diameter suck back porosity results .

2 . SPRUE FORMER ATTACHMENT :
Sprue should be attached to the thickest portion of the wax pattern .
It should be Flared for high density alloys & Restricted for low density alloys .

3 . SPRUE FORMER POSITION

Based on the
1. Individual judgement .
2. Shape & form of the wax pattern .

Patterns may be sprued directly or indirectly .
Indirect method is commonly used

Cement liners

Applications (if remaining dentin thickness is <0.5 mm)

o    Used for thermal insulation where cavity preparation is close to the pulp
o    Used for delivering medicaments to the pulp

•    Calcium hydroxide stimulates reparative dentin or
•    Eugenol relieves pain by desensitizing nerves
•    Used to deliver F ion to enamel and dentin

Components

o    Paste of calcium hydroxide reactant powder, ethyl toluene sulfonamide dispersant, zinc oxide filler, and zinc stearate radiopacifier
o    Paste of glycol salicylate reactant liquid, titanium dioxide filler powder, and calcium tungstenate radiopacifier

Reaction

Chemical reaction of calcium ions with salicylate to form methylsalicylate salts Moisture absorbed to allow calcium hydroxide to dissociate into ions to react with salicylate Mixture sets from outside surface to inside as water diffuses

Manipulation

Dentin should not be dehydrated or material will not setMix drop of each paste together for 5 secondsApply material to dentin and allow I to 2 minutes to set

Properties

o    Physical-good thermal and electrical insulator
o    Chemical-poor resistance to water solubility and may dissolve
o    Mechanical-low compressive strength (100 to 500 psi)
o    Biologic-releases calcium hydroxide constituents, which diffuse toward the pulp and stimulate
o    reparative dentin formation

ZINC OXIDE AND EUGENOL 

This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.

Chemical Composition.

The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set. 

Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light. 

Physical Properties. 
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi. 

CLINICAL USES OF ZINC OXIDE AND EUGENOL 

Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp. 

Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures. 

Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated. 

Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive. 
 

Composition of Acrylic Resins.

·        Powder. The powder is composed of a polymethyl methacrylate (PMMA), peroxide initiator, and pigments

·        Liquid. The liquid is a monomethyl methacrylate (MMA), hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)

COMPOSITE RESINS

Components

  • Filler particles-colloidal silica, crystalline silica (quartz), or silicates of various particle sizes (containing Li, AI, Zn, Yr)
  • Matrix-BIS-GMA (or UDMA) with lower molecular weight diluents (e.g., TEGDMA) that correct during polymerization
  • Coupling agent- silane that chemically bonds the surfaces of the filter particles to the polymer matrix

CLEANING AND PICKLING ALLOYS

The surface oxidation or other contamination of dental alloys is a troublesome occurrence. The oxidation of base metals in most alloys can be kept to a minimum or avoided by using a properly adjusted method of heating the alloy and a suitable amount of flux when melting the alloy . Despite these precautions, as the hot metal enters the mold, certain alloys tend to become contaminated on the surface by combining with the hot mold gases, reacting with investment ingredients, or physically including mold particles in the metal surface. The surface of most cast, soldered, or otherwise heated metal dental appliances is cleaned by warming the structure in suitable solutions, mechanical polishing, or other treatment of the alloy to restore the normal surface condition.

Surface tarnish or oxidation can be removed by the process of pickling. Castings of noble or high-noble metal may be cleaned in this manner by warming them in a 50% sulfuric acid and water solution . . After casting, the alloy (with sprue attached) is placed into the warmed pickling solution for a few seconds. The pickling solution will reduce oxides that have formed during casting. However, pickling will not eliminate a dark color caused by carbon deposition 

The effect of the solution can be seen by comparing the submerged surfaces to those that have still not contacted the solution. the ordinary inorganic acid solutions and do not release poisonous gases on boiling (as sulfuric acid does). In either case, the casting to be cleaned is placed in a suitable porcelain beaker with the pickling solution and warmed gently, but short of the boiling point. After a few moments of heating, the alloy surface normally becomes bright as the oxides are reduced. When the heating is completed, the acid may be poured from the beaker into the original storage container and the casting is thoroughly rinsed with water. Periodically, the pickling solution should be replaced with fresh solution to avoid excessive contamination.

Precautions to be taken while pickling

With the diversity of compositions of casting alloys available today, it is prudent to follow the manufacturer's instructions for pickling precisely, as all pickling solutions may not be compatible with all alloys. Furthermore, the practice of dropping a red-hot casting into the pickling solution should beavoided. This practice may alter the phase structure of the alloy or warp thin castings, and splashing acid may be dangerous to the operator. Finally, steel or stainless steel tweezers should not be used to remove castings from the pickling solutions. The pickling solution may dissolve the tweezers and plate the component metals onto the casting. Rubber-coated or Teflon tweezers are recommended for this purpose.

Explore by Exams