Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Mouth Protectors

Use - to protect against effects of blows to chin, top of the head, the face, or grinding of the teeth

Types

o    Stock protectors-least desirable because of poor fit
o    Mouth-formed protectors-improved fit compared with stock type
o    Custom-made protectors-preferred because of durability. low  speech impairment, and comfort


I. Components

a. Stock protectors-thermoplastic copolymer of PYA-PE (polyvinyl acetate-polyethylene copolymer)
b. Mouth-formed protectors-thermoplastic copolymer
c. Custom-made protectors- thermoplastic copolymer, rubber. or polyurethane
2. Reaction-physical reaction of hardening during cooling
3. Fabrication

Alginate impression made of maxillary arch. High-strength stone cast poured immediately. Thermoplastic material is heated in hot water and vacuum-molded to cast .

Mouth protector trimmed to within ½ inch of labial fold, clearance provided at the buccal and labial frena, and edges smoothed by flaming. Gagging, taste, irritation. and impairment of speech are minimized with properly fabricated appliances

4. Instructions for use

a. Rinse before and after use with cold water
b. Clean protector occasionally with soap and cool water
c. Store the protector  in a rigid container
d. Protect from heat and pressure during storage
e. Evaluate protector routinely for evidence of deterioration

Properties

1. Physical-thermal insulators
2. Chemical-absorbs after during use
3. Mechanical-tensile strength, modulus, and hardness decrease after  water absorption, but elongation, tear strength, and resilience increase
4. Biologic-nontoxic as long as no bacterial, fungal, or viral growth occurs on surfaces between uses
 

Properties-improve with filler content

Physical

Radiopacity depends on ions in silicate glass or the addition of barium sulfate (many systems radiolucent)
Coefficient of thermal expansion is 35 to 45 ppm/C and decreases with increasing filler content
Thermal and electrical insulators

Chemical

Water absorption is 0.5 % to 2.5% and increases with polymer level)
Acidulated topical fluorides (e.g., APF) tend to dissolve glass particles, and thus composites should be protected with petroleum jelly (Vaseline) during those procedures
Color changes occur in resin matrix with time because of oxidation, which produces colored by-products

Mechanical

Compressive strength is 45,000 to 60,000 lb/ in2, which is adequate
Wear resistance-improves with higher filler content, higher percentage of conversion in curing, and use of microfiller, but it is not adequate for some posterior applications
Surfaces rough from wear retain plaque and stain more readily

Biologic

Components may be cytotoxic, but cured composite is biocompatible as restorative filling material

Investment Techniques 

Single step investing technique:
The investing procedure is carried out in one step either by brush technique or by vacuum technique.

a). Brush technique:
The accurate water-powder ratio is mixed under vacuum. A brush is then used to paint the wax pattern with mix then the casting ring is applied over the crucible former and the ring is filled under vibration until it is completely filled.

b). vacuum technique:
• The mix in first hand spatulated, and then with the crucible former and pattern is place, then ring is attached to the mixing bowl.
• The vacuum hose is then attached to the assembly. The bowel is inverted and the ring is filled under vacuum and vibration

Two-step investing technique:

The investing procedure is carried out in two steps:

• First, the wax pattern is painted with a thick mix andis left till complete setting, the set investment block(first cost) is immersed in water for about tenminutes . the casting ring is then applied over the crucible former and filled with the properly mixedinvestment (second coat) till the ring is completely filled and the mix is left to set.The two-step investing technique is recommendedwhenever greater amount of expansion is required. Thistechnique also minimizes the distortion of the waxpattern and provides castings with smoother surfaces.

• The investment is allowed to set for the recommendedtime (usually one-hour) then the crucible former is removed. If a metal sprue former is used, it is removedby heating over a flame to loosen it from the wax pattern. Any loose particles of investment should beblown off with compressed air should be placed in a humidor if stored overnight.
 

Waxes

Many different waxes are used in dentistry. The composition, form, and color of each wax are designed to facilitate its use and to produce the best possible results.

Applications

o    Making impressions
o    Registering of tooth or soft tissue positions
o    Creating restorative patterns for lab fabrication
o    Aiding in laboratory procedures

Classification

a. Pattern waxes-inlay, casting, and baseplate waxes
b. Impression waxes-corrective and biteplate waxes
c. Processing waxes-boxing, utility, and sticky waxes

Types

1) Inlay wax-used to create a pattern for inlay, onlay or crown for subsequent investing and casting in a metal alloy.
2) Casting wax-used to create a pattern for metallic framework for a removable partial denture
3) Baseplate wax-used to establish the vertical dimension. plane of occlusion. and  initial arch form of a complete denture
4) Corrective impression wax-used to form a registry pattern of soft tissues on an impression
5) Bite registration wax-used to form a registry pattern for the occlusion of opposing models or casts
6) Boxing wax-used to form a box around an impression before pouring a  model or cast
7) Utility wax -soft pliable adhesive wax for modifying appliances, such as alginate impression trays
8) Sticky  wax-sticky when melted and used to temporarily adhere pieces of metal or resin in laboratory procedures


Components

a. Base waxes-hydrocarbon (paraffin) ester waxes    
b. Modifier waxes-carnauba, ceresin, bees wax, rosin, gum dammar, or microcrystalline waxes
c. Additives-colorants

Reaction-waxes are thermoplastic

Properties

Physical

a. High coefficients of thermal expansion and contraction
b. Insulators and so, cool unevenly; should be waxed in increments to allow heat dissipation

Chemical

a. Degrade prematurely if overheated
b. Designed to degrade into CO2and H2Oduring burnout

Mechanical-stiffness, hardness, and strength depend on modifier waxes used
 

METALLURGICAL TERMS

a. Cold Working. This is the process of changing the shape of a metal by rolling, pounding, bending, or twisting at normal room temperature.

b. Strain Hardening. This occurs when a metal becomes stiffer and harder because of continued or repeated application of a load or force. At this point, no further slippage of the atoms of the metal can occur without fracture.

c. Heat Softening Treatment (Annealing). This treatment is necessary in order to continue manipulating a metal after strain hardening to prevent it from fracturing. The process of annealing consists of heating the metal to the proper temperature (as indicated by the manufacturer's instructions) and cooling it rapidly by immersing in cold water. Annealing relieves stresses and strains caused by cold working and restores slipped atoms within the metal to their regular arrangement.

d. Heat Hardening Treatment (Tempering). This treatment is necessary to restore to metals properties that are decreased by annealing and cold working. Metals to be heat hardened should first be heat softened (annealed) so that all strain hardening is relieved and the hardening process can be properly controlled. Heat hardening is accomplished in dental gold alloy by heating to 840o Fahrenheit, allowing it to cool slowly over a 15-minute period to 480o Fahrenheit, and then immersing it in water.

Stages of manipulation

Definitions of intervals

  • Mixing interval-length of time of the mixing stage.
  • Working interval-length of time of the working stage
  •  Setting interval-length of time of the setting stage

Definitions of times

  • Mixing time-the elapsed time from the onset to the completion of mixing
  • Working time-the elapsed time from the onset of mixing until the onset of the initial setting time
  • Initial setting time-time at which sufficient reaction has occurred  to cause the materials to be resistant to  further manipulation
  • Final setting time-time at which the material practically is set as defined by its resistance to indentation

[All water-based materials lose their gloss at the time of setting]

Classification

Rigid impression materials

(1) Plaster
(2) Compound
(3) Zinc oxide-eugenol

Flexible hydrocolloid impression materials

(I) Agar-agar (reversible hydrocolloid)
(2) Alginate (irreversible hydrocolloid)

Flexible, elastomeric, or rubber impression materials

(1) Polysulfide rubber (mercaptan rubber)
(2) Silicone rubber (condensation silicone)
(3) Polyether rubber
(4) Polyvinyl siloxane (addition silicone)
 

Structure of gypsum products

Components
 

a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)

Explore by Exams