Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

COMPOSITE RESINS

Reaction

  • Free radical polymerization

Monomers + initiator. + accelerators-+ polymer molecules

  • Initiators-start polymerization by decomposing and reacting with monomer
  • Accelerators-speed up initiator decomposition
  • Amines used  for accelerating self –curing  systems
  •  Light  used for accelerating light-curing systems

Retarders or inhibitors-prevent premature polymerization

Classification of Dental amalgam

1. By powder particle shape .

  • Irregular (comminuted, filing, or lathecut)
  • Spherical (spherodized)
  • Blends (e.g., irregular-irregular, irregularspherical, or spherical-spherical)

2. By total amount of copper

  • Low-copper alloys (e.g., conventional, traditional); <5% copper
  • High-copper alloys (e,g.  corrosion resistant); 12% to 28% copper

3.By presence of zinc

Examples

  • Low-copper, irregular-particle alloy-silver (70%)-tin (26%)-copper (4%)
  • High-copper, blended-particles alloy-irregular particles, silver (70%) –tin (26%) -Copper (4%); spherical particles, silver (72%)-copper (28%)
  • High-copper, spherical-particles alloy-silver (60%) - tin (27%)-copper (13%)

Applications

a. Dentulous impressions for casts for prosthodontics

b. Dentulous impressions for pedodontic appliances

c. Dentulous impressions for study models for orthodontics

d. Edentulous impressions for casts for denture construction

Denture Cleansers

Use -  for removal of soft debris by light brushing and then rinsing of denture; hard deposits require professional repolishing

a. Alkaline perborates-do not remove bad stains; may harm liners .
b. Alkaline peroxides-harmful to denture liners
c. Alkaline hypochlorites-may cause bleaching, corrode base-metal alloys, and leave residual taste on appliance
d. Dilute acids-may corrode base-metal alloys
e. Abrasive powders and creams-can abrade denture surfaces

Denture cleaning Method

a. Full dentures without soft liners-immerse denture in solution of one part 5% sodium hypochlorite in three parts of water
b. Full or partial dentures without soft-liners immerse denture in solution of  1 teaspoon of hypochlorite with 2 teaspoons of  glassy phosphate  in a half of a glass of water
c. Lined dentures -- clean any soft liner with a cotton swab and cold water while cleaning the denture with a soft brush

Properties

1. Chemical-can swell plastic surfaces or corrode metal frameworks
2. Mechanical-can scratch the surfaces of denture bases or denture teeth
 

Bonding Agents

Applications-composites, resin-modified gIass ionomers, ceramic bonded to enamel restorations, veneers, orthodontic brackets, and desensitizing dentin by covering exposed tubules (Maryland bridges, composite and ceramic repair systems, amalgams and amalgam repair, and pinned amalgams)

Definitions;-

Smear layer - Layer of compacted debris on enamel and/or dentin from the cavity preparation process  that is weakly held to the surface (6 to 7 MPa) , and that limits bonding agent strength if not removed

Etching (or, conditioning)- smear layer removal and production of microspaces for micromechanical bonding by dissolving –minor amounts of surface hydroxyapatite crystals

Priming..- micromechanical (and chemical) bonding to the microspaces created by conditioning step.

Conditioning/priming agent-agent that accomplishes both actions

Bonding- formation of resin layer that connect  the primed surface to the overlying restoration (e.g., composite) .. –

Enamel bonding System-for bonding to enamel (although dentin bonding may be a Second step)

Dentin bonding system  for bonding  to dentin (although  enamel bonding  may have been a first step)

•        First-generation dentin bonding system for bonding to smear layer

•        New-generation dentin bonding system- for removing smear layer and etching intertubular dentin to allow  primer and/or bonding agent to diffuse into spaces between collagen and form hybrid zone

Enamel and dentin bonding system-for bonding to enamel and dentin surfaces with the same procedures

Amalgam bonding  system for bonding to enamel, dentin, and amalgam, dentin and amalgam during an amalgam placement procedure or for amalgam repair

Universal bonding system-for bonding to enamel, dentin, amalgam, porcelain , or any other substrate intraorally that may be necessary for a restorative procedure  using the  same set of procedures and materials

Types

Enamel bonding systems

Dentin bonding systems

Amalgam bonding systems

Universal bonding systems

Structure

o        Components of bonding systems

o        Conditioning agent-mineral or organic acid

Enamel only   37% phosphoric acid

Dentin only or enamel and .dentin---37% phosphoric acid, citric acid, maleic acid, or nitric acid

o        Priming agent

Hydrophobic-solvent-soluble, light cured monomer system

Hydrophilic-water-soluble, light-cured monomer system

Bonding agent

BIS-GMA-type monomer system

UDMA-type monomer system

Reaction

Bonding occurs primarily by intimate micromechanical retention with the relief created by the conditioning step

Chemical bonding is possible but is not recognized as contributing significantly to the overall bond strength

Manipulation-follow manufacturer's directions

Properties

Physical-thermal expansion and contraction may create fatigue stresses that debond the interface and permit micro leakage

Chemical-water absorption into the bonding agent may chemically alter the bonding

Mechanical-mechanical stresses may produce fatigue that debonds the interface and permits microleakage

Enamel bonding-adhesion occurs by macrotags (between enamel prisms) and microtags (into enamel prisms) to produce micromechanical retention

Dentin bonding-adhesion occurs by penetration of smear layer and formation of microtags into intertubular dentin to produce a hybrid zone (interpenetration zone or diffusion zone) that microscopically intertwines collagen bundles and bonding agent polymer

Biologic

Conditioning agents may be locally irritating if they come into contact with soft tissue

Priming agents (uncured), particularly those based on HEMA, may be skin sensitizers after several contacts with dental personnel

Protect skin on hands and face from inadvertent contact with unset materials and/ or their vapors

HEMA and other priming monomers may penetrate through rubber gloves in relatively short times (60 to 90 seconds)

Acrylic Appliances

Use - space maintenance  or tooth movement for orthodontics and pediatric dentistry

1. Components

a. Powder-PMMA powder. peroxide initiator, and pigments

b. Liquid-MMA monomer, hydroquinone inhibitor, cross-linking agents, and chemical accelerators (N, N-dimethyl-p-toluidine)

2. Reaction

 PMMA powder makes mixture viscous for manipulation before curing . Chemical accelerators cause decomposition of benzoyl peroxide into free radicals that initiate polymerization of monomer .  New PMMA is formed into a matrix that surrounds PMMA powder. Linear shrinkage of 5% to 7% during setting. but dimensions of appliances are not critical

Casting Alloys

Applications-inlay, onlay,  crowns, and bridges

Terms

a. Precious-based on valuable elements
b. Noble or immune-corrosion-resistant element or alloy
c. Base or active-corrosion-prone alloy
d. Passive -corrosion resistant because of surface oxide film
e. Karat (24 karat is 100% gold; 18 karat is 75% gold)
f. Fineness (1000 fineness is I00% gold; 500 fineness is 50% gold)

Classification

High-gold alloys are > 75% gold or other noble metals

Type 1-    83% noble metals (e.g., in simple inlays)
Type II-≥78% noble metals (e.g.,in inlays and onlays)
Type IlI-≥75% noble metals (e.g., in crowns and bridges)
Type IV-≥75% noble metals (e.g., in partial dentures)

Medium-gold alloys are 25% to 75% gold or other noble metals

Low-gold alloys are <25% gold or other noble metals

Gold-substitute alloys arc alloys not containing gold

(1) Palladium-silver alloys-passive .because of mixed oxide film
(2) Cobalt-chromium alloys-passive because of Cr203 oxide film
(3) Iron-chromium alloys-passive because of Cr203 oxide film

Titanium alloys are based on 90% to 100% titanium ; passive because of TiO2 oxide film

Components of gold alloys

-    Gold contributes to corrosion resistance
-    Copper contributes to hardness and strength
-    Silver counteracts orange color of copper
-   Palladium increases melting point and hardness
-    Platinum increases melting point
-    Zinc acts as oxygen scavenger during casting

Manipulation

-    Heated to just beyond melting temperature for casting
o    Cooling shrinkage causes substantial contraction

Properties

Physical

-    Electrical and thermal conductors
-   Relatively low coefficient of thermal expansion

Chemical

-    Silver  content affects susceptibility to tarnish
-   Corrosion resistance  is attributable to nobility or passivation

Mechanical

-   High tensile and compressive strengths but relatively weak in thin sections, such as margins, and can be deformed relatively easily
-    Good wear resistance except in contact with Porcelain
 

Explore by Exams