NEET MDS Lessons
Dental Materials
Casting ring
CASTING RING LINERS
Most common way to provide investment expansion is by using a liner in the casting ring .Traditionally asbestose was used .
Non asbestose ring liner used are :
1) Aluminosilicate ceramic liner .
2) Cellulose paper liner .
The aim of using a resilient liner is to
-. allow different types of investmentbexpansion (act as a cushion)
_. facilitate venting during casting procedure.
_. facilitate the removal of the investment block after casting.&. prevent the distortion by permitting the outward expansion of the mold.
The casting ring holds the investment in place during setting and restricts the expansion of the mold. Normally a resilient liner is placed inside the ring leaving about 2-3 mm from both ends to allow for supporting contact of the investment with the casting ring.
Purpose of Casting Ring Liner
Ringer liner is he most commonly used technique to provide investment expansion. To ensure uniform expansion , liner is cut to fit the inside diameter of the casting ring with no overlap.
Non-asbestos Ring Liners: Ceramic (aluminum silicate) Cellulose (paper) Ceramic-cellulose combination Safety of the ceramic ring liners remains uncertain, because aluminum silicate also appears capable of producing hazardous-size respirable particles
CLEANING AND PICKLING ALLOYS
The surface oxidation or other contamination of dental alloys is a troublesome occurrence. The oxidation of base metals in most alloys can be kept to a minimum or avoided by using a properly adjusted method of heating the alloy and a suitable amount of flux when melting the alloy . Despite these precautions, as the hot metal enters the mold, certain alloys tend to become contaminated on the surface by combining with the hot mold gases, reacting with investment ingredients, or physically including mold particles in the metal surface. The surface of most cast, soldered, or otherwise heated metal dental appliances is cleaned by warming the structure in suitable solutions, mechanical polishing, or other treatment of the alloy to restore the normal surface condition.
Surface tarnish or oxidation can be removed by the process of pickling. Castings of noble or high-noble metal may be cleaned in this manner by warming them in a 50% sulfuric acid and water solution . . After casting, the alloy (with sprue attached) is placed into the warmed pickling solution for a few seconds. The pickling solution will reduce oxides that have formed during casting. However, pickling will not eliminate a dark color caused by carbon deposition
The effect of the solution can be seen by comparing the submerged surfaces to those that have still not contacted the solution. the ordinary inorganic acid solutions and do not release poisonous gases on boiling (as sulfuric acid does). In either case, the casting to be cleaned is placed in a suitable porcelain beaker with the pickling solution and warmed gently, but short of the boiling point. After a few moments of heating, the alloy surface normally becomes bright as the oxides are reduced. When the heating is completed, the acid may be poured from the beaker into the original storage container and the casting is thoroughly rinsed with water. Periodically, the pickling solution should be replaced with fresh solution to avoid excessive contamination.
Precautions to be taken while pickling
With the diversity of compositions of casting alloys available today, it is prudent to follow the manufacturer's instructions for pickling precisely, as all pickling solutions may not be compatible with all alloys. Furthermore, the practice of dropping a red-hot casting into the pickling solution should beavoided. This practice may alter the phase structure of the alloy or warp thin castings, and splashing acid may be dangerous to the operator. Finally, steel or stainless steel tweezers should not be used to remove castings from the pickling solutions. The pickling solution may dissolve the tweezers and plate the component metals onto the casting. Rubber-coated or Teflon tweezers are recommended for this purpose.
|
PROPERTY |
INGREDIENT |
|||
|
|
Silver |
Tin |
Copper |
Zinc |
|
Strength |
Increases |
|
|
|
|
Durability |
Increases |
|
|
|
|
Hardness |
|
|
Increases |
|
|
Expansion |
Increases |
Decreases |
Increases |
|
|
Flow |
Decreases |
Increases |
Decreases |
|
|
Color |
Imparts |
|
|
|
|
Setting time |
Decreases |
Increases |
Decreases |
|
|
Workability |
|
Increases |
|
Increases |
|
|
||||
Structure of gypsum products
Components
a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)
CAD/CAM Restorations
Applications-inlays, onlays, veneers, crowns, bridges, implants, and implant prostheses
Stages of fabrication
CSD-computerized surface digitization
CAD-computer-aided (assisted) design
CAM-computer-aided (assisted) machining
CAE-computer-aided esthetics (currently theoretic)
CAF-computer-aided finishing or polishing (which are currently theoretic steps)
Classification
Chairside or in-office systems
(1) Cerec (Siemens system)-inlays, onlays, veneers
(2) Sopha (Duret system)-inlays, onlays (and Crowns)
Laboratory systems
(1) DentiCAD (Rekow system)-inlay, onlays, veneers, crowns
(2) Cicero (Elephant system)-porcelain fused-to-metal crowns
Materials
a. Feldspathic oorcelains (Vita)
b. Machinable ceramics (Dicor MGC)
c. Metal alloys limited use)
Cementing
- Etching enamel and/or dentin for micromechanical retention
- Bonding agent for retention to etched surface
- Composite as a luting cement for reacting chemically with bonding agent and with silanated surface of restoration
- Silane for bonding to etched ceramic (or metal) restorations and to provide chemical reaction
- Hydrofluoric acid etching to create spaces for micromechanical retention on surface or restoration
Properties
1. Physical properties
a. Thermal expansion coefficient well matched to tooth structure
b. Good resistance to plaque adsorption or retention
2. Chemical properties-not resistant to acids and should be protected from APF
3. Mechanical properties
a. Excellent wear resistance (but may abrade opponent teeth)
b. Some wear of luting cements but self-limiting
c. Excellent toothbrush abrasion
4. Biologic properties-excellent properties
METALLURGICAL TERMS
a. Cold Working. This is the process of changing the shape of a metal by rolling, pounding, bending, or twisting at normal room temperature.
b. Strain Hardening. This occurs when a metal becomes stiffer and harder because of continued or repeated application of a load or force. At this point, no further slippage of the atoms of the metal can occur without fracture.
c. Heat Softening Treatment (Annealing). This treatment is necessary in order to continue manipulating a metal after strain hardening to prevent it from fracturing. The process of annealing consists of heating the metal to the proper temperature (as indicated by the manufacturer's instructions) and cooling it rapidly by immersing in cold water. Annealing relieves stresses and strains caused by cold working and restores slipped atoms within the metal to their regular arrangement.
d. Heat Hardening Treatment (Tempering). This treatment is necessary to restore to metals properties that are decreased by annealing and cold working. Metals to be heat hardened should first be heat softened (annealed) so that all strain hardening is relieved and the hardening process can be properly controlled. Heat hardening is accomplished in dental gold alloy by heating to 840o Fahrenheit, allowing it to cool slowly over a 15-minute period to 480o Fahrenheit, and then immersing it in water.
Stages of manipulation
Definitions of intervals
- Mixing interval-length of time of the mixing stage.
- Working interval-length of time of the working stage
- Setting interval-length of time of the setting stage
Definitions of times
- Mixing time-the elapsed time from the onset to the completion of mixing
- Working time-the elapsed time from the onset of mixing until the onset of the initial setting time
- Initial setting time-time at which sufficient reaction has occurred to cause the materials to be resistant to further manipulation
- Final setting time-time at which the material practically is set as defined by its resistance to indentation
[All water-based materials lose their gloss at the time of setting]
Pit-and-Fissure Dental Sealants
Applications/Use
Occlusal surfaces of newly erupted posterior teeth
Labial surfaces of anterior teeth with fissures
Occlusal surfaces of teeth in older patients with reduced saliva flow (because low saliva increases the susceptibility to caries)
Types
Polymerization method
Self-curing (amine accelerated)
Light curing (light accelerated)
Filler content
Unfilled-most systems are unfilled because filler tends to interfere with wear away from self-cleaning occlusal areas(sealants are designed to wear away, except where there is no self-cleaning action a common misconception is that sealants should be wear resistant)
Components
Monomer-BIS-GMA with TEGDM diluent to facilitate flow into pits and fissures prior to cure
Initiator-benzoyl peroxide (in self-cured) and diketone (in light cured)
Accelerator-amine (In light cured)
Opaque filler-I % titanium dioxide. or other colorant to make the material detectable on tooth surfaces
Reinforcing filler-generally not added because wear resistance is not required within pits and fissures
Reaction-free radical reaction
Manipulation
Preparation
Clean pits and fissures of organic debris. Do not apply fluoride before etching because it will tend to make enamel more acid resistant. Etch occlusal surfaces, pits, and fissures for 30 seconds (gel) or 60 seconds (liquid) with 37% phosphoric acid . Wash occlusal surfaces for 20 seconds. Dry etched area for 20 seconds with clean air spray. Apply sealant and polymerize
Mixing or dispensing
Self-cured-mix equal amounts of liquids in Dappen dish for 5 seconds with brush applicator. Light cured-dispense from syringe tips
Placement
-pits, fissures, and occlusal surfaces --> Allow 60 seconds for self-cured materials to set.
Finishing
Remove unpolymerized and excess material .Examine hardness of sealant. Make occlusal adjustments where necessary in sealant; some sealant materials are self-adjusting
Properties
Physical
Wetting-low-viscosity sealants wet acid etched tooth structure the best
Mechanical
Wear resistance should not be too great because sealant should be able to wear off of self-cleaning areas of tooth
Be careful to protect sealants during polishing procedures with air abrading units to prevent sealant loss
Clinical efficacy
Effectiveness is 100% if retained in pits and fissures .Requires routine clinical evaluation for resealing of areas of sealant loss attributable to poor retention .
Sealants resist effects of topical fluorides