NEET MDS Lessons
Dental Materials
Effects of Amalgam.
(1) The combined effects of the properties of its ingredients should provide the most satisfactory restorative material.
(2) Quantity of mercury. Too little mercury in the mix results in a grainy, weak, readily tarnished, and corroded amalgam. Too much mercury will cause excessive expansion and weakened amalgam.
(3) Composition of the alloy. Composition of the alloy must include a minimum of 65 percent silver, a maximum of 29 percent tin, a maximum of 6 to 13 percent copper, and a maximum of two percent zinc by weight
(4) Correct proportion important. Before use, the silver alloy is mixed with pure and uncontaminated mercury. There are some alloys that are completely zinc free. They can therefore be used more successfully in a moisture-contaminated environment.
(5) Properties of the finished product.
Silver imparts strength, durability, and color, gives the alloy desirable setting expansion, decreases flow, and accelerates (decreases) the setting time.
Tin makes the amalgam easier to work, controls excessive setting expansion, and increases both flow and setting time.
Copper increases hardness, contributes to setting expansion, reduces flow, and decreases setting time.
Zinc increases workability, and unites with oxygen and other "impurities" to produce a clean amalgam.
The Sprue :
Its a channel through which molten alloy can reach the mold in an invested ring after the wax has been eliminated. Role of a Sprue: Create a channel to allow the molten wax to escape from the mold. Enable the molten alloy to flow into the mold which was previously occupied by the wax pattern.
FUNCTIONS OF SPRUE
1 . Forms a mount for the wax pattern .
2 . Creates a channel for elimination of wax .
3 .Forms a channel for entry of molten metal
4 . Provides a reservoir of molten metal to compensate for the alloy shrinkage .
SELECTION OF SPRUE
Sprue former gauge selection is often empirical, is yet based on the following five general principles:
1. Select the gauge sprue former with a diameter that is approximately the same size as the thickest area of the wax pattern. If the pattern is small, the sprue former must also be small because a large sprue former attached to a thin delicate pattern could cause distortion. However if the sprue former diameter is too small this area will solidify before the casting itself and localized shrinkage porosity may result.
2. If possible the sprue former should be attached to the portion of the pattern with the largest cross-sectional area. It is best for the molten alloy to flow from the thick section to the surrounding thin areas. This design minimizes the risk of turbulence.
3. The length of the sprue former should be long enough to properly position the pattern in the casting ring within 6mm of the trailing end and yet short enough so the molten alloy does not solidify before it fills the mold.
4. The type of sprue former selected influences the burnout technique used. It is advisable to use a two-stage burnout technique whenever plastic sprue formers or patterns are involved to ensure complete carbon elimination, because plastic sprues soften at temperatures above the melting point of the inlay waxes.
5. Patterns may be sprued directly or indirectly. For direct sprueing the sprue former provides the direct connection between the pattern area and the sprue base or crucible former area. With indirect spruing a connector or reservoir bar is positioned between the pattern and the crucible former. It is common to use indirect spruing for multiple stage units and fixed partial dentures.
Wax elimination (burnout):
Wax elimination or burnout consists of heating the investment in a thermostatically controlled furnace until all traces of the wax are vaporized in order to obtain an empty mold ready to receive the molten alloy during procedure.
• The ring is placed in the furnace with the sprue hole facing down to allow for the escape of the molten wax out freely by the effect of gravity .
• The temperature reached by the investment determines thethermal expansion. The burnout temperature is slowly increased in order to eliminate the wax and water without cracking the investment.
•For gypsum bonded investment, the mold is heated to650 -6870 c )to cast precious and semiprecious
precious alloys.
• Whereas for phosphate-bonded investment, the mold is heated up to 8340 c to cast nonprecious alloys at high fusing temperature.
The ring should be maintained long enough at the maximum temperature (“heat soak”) to minimize a sudden drop in temperature upon removal from the oven. Such a drop could result in an incomplete casting because of excessively rapid solidification of thealloy as it enters the mold.
• When transferring the casting ring to casting, a quick visual check of the sprue in shaded light is helpful to see whether it is properly heated. It should be a cherry-red color .
WAX BURNOUT AND HEATING THE RING
After the investment has set hard, the crucible former and the metal sprue former is removed carefully, and any loose particles at the opening of the sprue hole are removed with small brush.
The purpose of the wax burnout is to make room for the liquid metal. The ring is placed in the oven at 250C with the sprue end down, thus allowing the melted wax to flow, out for 30min or even up to 60min may be a good procedure to ensure complete elimination of the wax and the carbon.
Heating the ring: The object is to create a mold of such dimension, condition and temperature so that it is best suited to receive the metal.
Hygroscopic Low-Heat Technique.
After the wax elimination the temperature of the same furnace can be set to a higher temperature for heating or else, the ring can be transferred to another furnace, which has already set to the higher temperature. In any case accurate temperature control is essential and therefore these furnaces have pyrometer and thermocouple arrangement. The ring is placed in the furnace with the sprue hole down and heated to 500C and kept at this temperature for 1 hour. In this low heat technique the thermal expansion obtained is less but together with the previously obtained hygroscopic expansion the total expansion amounts to 2.2 percent, which is slightly higher than what is required for gold alloys.
So this technique obtains its compensation expansion from three sources:
(1) The 37º C water bath expands the wax pattern
(2) The warm water entering the investment mold from the top adds some hygroscopic expansion
(3) The thermal expansion at 500' C provides the needed thermal expansion.
High-Heat Thermal Expansion Technique.
After the wax elimination, the ring should be placed in the furnace which is at room temperature and then the temperature is gradually raised, until it comes to 700C in 1 hour. Then the ring is heat soaked at this temperature for ½ hour. This slow rise in temperature is necessary to prevent
This approach depends almost entirely on high-heat burnout to obtain the required expansion, while at the same time eliminating the wax pattern. Additional expansion results from the slight heating of gypsum investments on setting, thus expanding the wax pattern, and the water entering the investment from the wet liner, which adds a small amount of hygroscopic expansion to the normal setting expansion.
CASTING: casting is the process by which the wax pattern of a restoration is converted to a replicate in a dental alloy. The casting process is used to make dental restorations such as inlays, onlays, crowns, bridges and removable partial dentures.
Objectives of casting
1) To heat the alloy as quickly as possible to a completely molten condition.
2) To prevent oxidation by heating the metal with awell adjusted torch .
3) To produce a casting with sharp details by having adequate pressure to the well melted metal to force into the mold.
STEPS IN MAKING A CAST RESTORATION
1. TOOTH PREPARATION
2. IMPRESSION
3. DIE PREPARATION
4. WAX PATTERN FABRICATION
5. SPRUING
ZINC OXIDE AND EUGENOL
This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.
Chemical Composition.
The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set.
Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light.
Physical Properties.
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi.
CLINICAL USES OF ZINC OXIDE AND EUGENOL
Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp.
Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures.
Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated.
Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive.
Denture Cleansers
Use - for removal of soft debris by light brushing and then rinsing of denture; hard deposits require professional repolishing
a. Alkaline perborates-do not remove bad stains; may harm liners .
b. Alkaline peroxides-harmful to denture liners
c. Alkaline hypochlorites-may cause bleaching, corrode base-metal alloys, and leave residual taste on appliance
d. Dilute acids-may corrode base-metal alloys
e. Abrasive powders and creams-can abrade denture surfaces
Denture cleaning Method
a. Full dentures without soft liners-immerse denture in solution of one part 5% sodium hypochlorite in three parts of water
b. Full or partial dentures without soft-liners immerse denture in solution of 1 teaspoon of hypochlorite with 2 teaspoons of glassy phosphate in a half of a glass of water
c. Lined dentures -- clean any soft liner with a cotton swab and cold water while cleaning the denture with a soft brush
Properties
1. Chemical-can swell plastic surfaces or corrode metal frameworks
2. Mechanical-can scratch the surfaces of denture bases or denture teeth
Gypsum Products
Characteristics |
Plaster |
Stone |
Diestone |
Chemical Name |
Beta-Calcium Sulfate hemihydrate |
Alpha-Calcium sulfate hemihydrate |
Alpha-Calcium sulfate hemihydrate |
Formula |
CaSO4 – ½ H2O |
CaSO4 – ½ H2O |
CaSO4 – ½ H2O |
Uses |
Plaster Models ,Impression Plasters |
Cast Stone, Investment |
Improved Stone, diestone |
Water(W) Reaction Water Extra Water Total water Powder (P) W/P Ratio |
18ml 32ml 50ml 100g 0.50 |
18ml 12ml 30ml 100g 0.30 |
18ml 6ml 24ml 100g 0.24 |