Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Manipulation

Selection

o    Microfilled composites or hybrids for anterior class III, IV, V
o    Hybrids or midifills for posterior class I, II, III, V

Conditioning of enamel and / or dentin

Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize

Mixing (if required)--> mix two pastes for 20 to 30 seconds

o    Self-cured composite-working time is 60 to 120 seconds after mixing
o    Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o    Dual-cured composite-working time is > 10 minutes
o    Two-stage cured composite-working time is >5 minutes

Placement

use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness
 

ZINC OXIDE AND EUGENOL 

This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.

Chemical Composition.

The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set. 

Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light. 

Physical Properties. 
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi. 

CLINICAL USES OF ZINC OXIDE AND EUGENOL 

Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp. 

Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures. 

Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated. 

Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive. 
 

Bonding Agents

Applications-composites, resin-modified gIass ionomers, ceramic bonded to enamel restorations, veneers, orthodontic brackets, and desensitizing dentin by covering exposed tubules (Maryland bridges, composite and ceramic repair systems, amalgams and amalgam repair, and pinned amalgams)

Definitions;-

Smear layer - Layer of compacted debris on enamel and/or dentin from the cavity preparation process  that is weakly held to the surface (6 to 7 MPa) , and that limits bonding agent strength if not removed

Etching (or, conditioning)- smear layer removal and production of microspaces for micromechanical bonding by dissolving –minor amounts of surface hydroxyapatite crystals

Priming..- micromechanical (and chemical) bonding to the microspaces created by conditioning step.

Conditioning/priming agent-agent that accomplishes both actions

Bonding- formation of resin layer that connect  the primed surface to the overlying restoration (e.g., composite) .. –

Enamel bonding System-for bonding to enamel (although dentin bonding may be a Second step)

Dentin bonding system  for bonding  to dentin (although  enamel bonding  may have been a first step)

•        First-generation dentin bonding system for bonding to smear layer

•        New-generation dentin bonding system- for removing smear layer and etching intertubular dentin to allow  primer and/or bonding agent to diffuse into spaces between collagen and form hybrid zone

Enamel and dentin bonding system-for bonding to enamel and dentin surfaces with the same procedures

Amalgam bonding  system for bonding to enamel, dentin, and amalgam, dentin and amalgam during an amalgam placement procedure or for amalgam repair

Universal bonding system-for bonding to enamel, dentin, amalgam, porcelain , or any other substrate intraorally that may be necessary for a restorative procedure  using the  same set of procedures and materials

Types

Enamel bonding systems

Dentin bonding systems

Amalgam bonding systems

Universal bonding systems

Structure

o        Components of bonding systems

o        Conditioning agent-mineral or organic acid

Enamel only   37% phosphoric acid

Dentin only or enamel and .dentin---37% phosphoric acid, citric acid, maleic acid, or nitric acid

o        Priming agent

Hydrophobic-solvent-soluble, light cured monomer system

Hydrophilic-water-soluble, light-cured monomer system

Bonding agent

BIS-GMA-type monomer system

UDMA-type monomer system

Reaction

Bonding occurs primarily by intimate micromechanical retention with the relief created by the conditioning step

Chemical bonding is possible but is not recognized as contributing significantly to the overall bond strength

Manipulation-follow manufacturer's directions

Properties

Physical-thermal expansion and contraction may create fatigue stresses that debond the interface and permit micro leakage

Chemical-water absorption into the bonding agent may chemically alter the bonding

Mechanical-mechanical stresses may produce fatigue that debonds the interface and permits microleakage

Enamel bonding-adhesion occurs by macrotags (between enamel prisms) and microtags (into enamel prisms) to produce micromechanical retention

Dentin bonding-adhesion occurs by penetration of smear layer and formation of microtags into intertubular dentin to produce a hybrid zone (interpenetration zone or diffusion zone) that microscopically intertwines collagen bundles and bonding agent polymer

Biologic

Conditioning agents may be locally irritating if they come into contact with soft tissue

Priming agents (uncured), particularly those based on HEMA, may be skin sensitizers after several contacts with dental personnel

Protect skin on hands and face from inadvertent contact with unset materials and/ or their vapors

HEMA and other priming monomers may penetrate through rubber gloves in relatively short times (60 to 90 seconds)

ACRYLIC RESINS

Use. Acrylic (unfilled) resins are used as temporary crown material. Temporary crowns are placed to protect the crown preparation and provide patient comfort during the time the permanent crown is being constructed

Solution Liners (Varnishes)

Applications 

o    Enamel and dentin lining for amalgam restorations
o    Enamel and dentin lining for cast restorations that are used with non adhesive cements
o    Coating over materials that are moisture sensitive during setting

Components of copal resin varnish

o    90% solvent mixture (e.g., chloroform, acetone, and alcohol)
o    10% dissolved copal resin

Reaction
 
Varnish sets physically by drying → Solvent loss occurs in 5 to 15 seconds (a film forms the same way as drying fingernail polish)

Manipulation

Apply thin coat over dentin. enamel. And margins of the cavity preparation → Dry lightly with air for 5 seconds Apply a second thin coat → Final thickness is 1 to 5 µ.m

Properties

o    Physical 

Electrically insulating barrier that prevents shocks. Too thin to be thermally insulating. Decreases degree of percolation attributable to thermal expansion

o    Chemical

Forms temporary barrier that prevents microleakage into dentinal tubules until secondary dentin formation occurs. Decreases initial tendency for electrochemical corrosion

o     Mechanical

Very weak and brittle film that has limited lifetime 
Film adheres to smear layer

Denture Liners

Use - patients with soft tissue irritation

Types

Long-term liners (soft liners)-used over a period of months for patients with severe undercuts or continually sore residual ridges

Short-term liners (tissue conditioners)-used to facilitate tissue healing over several days

Structure

Soft liners-plasticized acrylic copolymers or silicone rubber

Tissue conditioners-PEMA plasticized with ethanol and aromatic esters

Properties

Liners flow under low pressure, allowing adaptation to soft tissues, but are elastic during chewing forces. 
Low initial hardness, but liner becomes  harder as plasticizers are leached out during intraoral use 
Some silicone rubber liners support growth of yeasts
 

Dental Porcelain and PFM Porcelains

Applications/Use

a. Porcelain inlays and jacket crowns
b. PFM crowns and bridges
c. Denture teeth

Terms

PFM-porcelain fused to metal
Fusing-adherence of porcelain particles into a single porcelain mass

Classification

 Dental porcelain is manufactured as a powder. When it is heated to a very high temperature in a special oven, it fuses into a homogeneous mass. The heating process is called baking. Upon cooling, the mass is hard and dense. The material is made in a variety of shades to closely match most tooth colors. Baked porcelain has a translucency similar to that of dental enamel, so that porcelain crowns, pontics, and inlays of highly pleasing appearance can be made. Ingredients of porcelain include feldspar, kaolin, silica in the form of quartz, materials which act as fluxes to lower the fusion point, metallic oxide, and binders. Porcelains are classified into high-, medium-, and low-fusing groups, depending upon the temperature at which fusion takes place. 
 
High-Fusing Porcelains. High-fusing porcelains fuse at 2,400o Fahrenheit or over. They are used for the fabrication of full porcelain crowns (jacket crowns). 

Medium-Fusing Porcelains. Medium-fusing porcelains fuse between 2,000o and 2,400o Fahrenheit. They are used in the fabrication of inlays, crowns, facings, and pontics. A pontic is the portion of a fixed partial denture, which replaces a missing tooth. 

Low-Fusing Porcelains. Low-fusing porcelains fuse between 1,600o and 2,000o Fahrenheit. They are used primarily to correct or modify the contours of previously baked high- or medium-fusing porcelain restorations. Eg  for PFM restorations

Structure

Components

a. Large number of oxides but principally silicon oxide, aluminum oxide. and potassium oxide    
b. Oxides are supplied by mixing clay, feldspar, and quartz.

Manipulation

Porcelain powders mixed with water and compacted into position for firing
Shrinkage is 30% on firing because of fusing and so must be made oversized and built up by several firing steps

Properties

1. Physical

a. Excellent electrical and thermal insulation
b. Low coefficient of thermal expansion and contraction
c. Good color and translucency; excellent aesthetics

2. Chemical

a. Not resistant to acids (and can be dissolved by  contact with APF topical fluoride treatments)
b. Can be acid-etched with phosphoric acid or  hydrofluoric acid for providing microll1echanical retention for cements

3. Mechanical

a. Harder than tooth structure and ,will cause opponent wear
b. Can be polished with aluminum oxide pastes

Explore by Exams