Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Classification of Dental amalgam

1. By powder particle shape .

  • Irregular (comminuted, filing, or lathecut)
  • Spherical (spherodized)
  • Blends (e.g., irregular-irregular, irregularspherical, or spherical-spherical)

2. By total amount of copper

  • Low-copper alloys (e.g., conventional, traditional); <5% copper
  • High-copper alloys (e,g.  corrosion resistant); 12% to 28% copper

3.By presence of zinc

Examples

  • Low-copper, irregular-particle alloy-silver (70%)-tin (26%)-copper (4%)
  • High-copper, blended-particles alloy-irregular particles, silver (70%) –tin (26%) -Copper (4%); spherical particles, silver (72%)-copper (28%)
  • High-copper, spherical-particles alloy-silver (60%) - tin (27%)-copper (13%)

Structure of gypsum products

Components
 

a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)

Classification

Rigid impression materials

(1) Plaster
(2) Compound
(3) Zinc oxide-eugenol

Flexible hydrocolloid impression materials

(I) Agar-agar (reversible hydrocolloid)
(2) Alginate (irreversible hydrocolloid)

Flexible, elastomeric, or rubber impression materials

(1) Polysulfide rubber (mercaptan rubber)
(2) Silicone rubber (condensation silicone)
(3) Polyether rubber
(4) Polyvinyl siloxane (addition silicone)
 

CLEANING AND PICKLING ALLOYS

The surface oxidation or other contamination of dental alloys is a troublesome occurrence. The oxidation of base metals in most alloys can be kept to a minimum or avoided by using a properly adjusted method of heating the alloy and a suitable amount of flux when melting the alloy . Despite these precautions, as the hot metal enters the mold, certain alloys tend to become contaminated on the surface by combining with the hot mold gases, reacting with investment ingredients, or physically including mold particles in the metal surface. The surface of most cast, soldered, or otherwise heated metal dental appliances is cleaned by warming the structure in suitable solutions, mechanical polishing, or other treatment of the alloy to restore the normal surface condition.

Surface tarnish or oxidation can be removed by the process of pickling. Castings of noble or high-noble metal may be cleaned in this manner by warming them in a 50% sulfuric acid and water solution . . After casting, the alloy (with sprue attached) is placed into the warmed pickling solution for a few seconds. The pickling solution will reduce oxides that have formed during casting. However, pickling will not eliminate a dark color caused by carbon deposition 

The effect of the solution can be seen by comparing the submerged surfaces to those that have still not contacted the solution. the ordinary inorganic acid solutions and do not release poisonous gases on boiling (as sulfuric acid does). In either case, the casting to be cleaned is placed in a suitable porcelain beaker with the pickling solution and warmed gently, but short of the boiling point. After a few moments of heating, the alloy surface normally becomes bright as the oxides are reduced. When the heating is completed, the acid may be poured from the beaker into the original storage container and the casting is thoroughly rinsed with water. Periodically, the pickling solution should be replaced with fresh solution to avoid excessive contamination.

Precautions to be taken while pickling

With the diversity of compositions of casting alloys available today, it is prudent to follow the manufacturer's instructions for pickling precisely, as all pickling solutions may not be compatible with all alloys. Furthermore, the practice of dropping a red-hot casting into the pickling solution should beavoided. This practice may alter the phase structure of the alloy or warp thin castings, and splashing acid may be dangerous to the operator. Finally, steel or stainless steel tweezers should not be used to remove castings from the pickling solutions. The pickling solution may dissolve the tweezers and plate the component metals onto the casting. Rubber-coated or Teflon tweezers are recommended for this purpose.

Lost Wax Process

The lost wax casting process is widely used as it offers asymmetrical casting withnvery fine details to be manufactured relatively inexpensively. The process involves producing a metal casting using a refractory mould made from a wax replica pattern.
The steps involved in the process or the lost wax casting are:

1 . Create a wax pattern of the missing tooth / rim
2 . Sprue the wax pattern
3 . Invest the wax pattern
4 . Eliminate the wax pattern by burning it (inside the furnace or in hot water). This will create a mould.
5 . Force molten metal into the mould - casting.
6 . Clean the cast.
7 . Remove sprue from the cast
8 . Finish and polish the casting on the die .

The lost-wax technique is so named because a wax pattern of a restoration is invested in a ceramic material, then the pattern is burned out ("lost") to create a space into which molten metal is placed or cast. The entire lost-wax casting process . 

Wax pattern removal:

Sprue former can be used to remove the pattern. If not the pattern is removed with a sharp probe. Then the sprue former is attached to it. The pattern should be removed directly in line with the principle axis of the tooth or the prepared cavity. Any rotation of the pattern will distort it. Hollow sprue pin is advisable because of its greater retention to the pattern.

Finishing and Polishing

Remove oxygen-inhibited layer .Use stones or carbide burs for gross reduction.Use highly fluted carbide burs or special diamonds for fine reduction.Use aluminum oxide strips or disks for finishing. Use fine aluminum oxide finishing pastes. Microfills develop smoothest finish because of small size of filler particles
 

Gypsum Products

 

Characteristics

Plaster

Stone

Diestone

Chemical Name

Beta-Calcium Sulfate hemihydrate

Alpha-Calcium sulfate hemihydrate

Alpha-Calcium sulfate hemihydrate

Formula

CaSO4 – ½ H2O

CaSO4 – ½ H2O

CaSO4 – ½ H2O

Uses

Plaster Models ,Impression Plasters

Cast Stone, Investment

Improved Stone, diestone

Water(W)

Reaction Water

Extra Water

Total water

Powder (P)

W/P Ratio

 

18ml

32ml

50ml

100g

0.50

 

18ml

12ml

30ml

100g

0.30

 

18ml

6ml

24ml

100g

0.24

Explore by Exams