Talk to us?

Dental Materials - NEETMDS- courses
NEET MDS Lessons
Dental Materials

ACID ETCH TECHNIQUE

Cavities requiring added retention (to hold firmly) are treated with an acid etching technique. This technique improves the seal of the composite resin to the cavity wall. The enamel adjacent to the margins of the preparation is slightly decalcified with a 40 to 50 percent phosphoric acid solution. This etched enamel enhances the mechanical retention of the composite resin. In addition, the acid etch technique is used to splint unstable teeth to adjacent teeth. The acid is left on the cut tooth structure only 15 seconds, in accordance with the directions for one common commercial brand. The area is then flushed with water for a minimum of 30 seconds to remove the decalcified material. Etched tooth structure will have a chalky appearance.

I . Procedure for single casting :

A 2.5 mm sprue former is recommended
for molar crowns 2.0 mm for premolars & partial coverage crowns .

II . Procedure for multiple casting :

Each unit is joined to a runner bar .

A single sprue feeds the runner bar

4 . SPRUE FORMER DIRECTION
Sprue Should be directed away from the delicate parts of the pattern
It should not be at right angles to a flat surface .(leads to turbulance  porosity .)
Ideal angulation is 45 degrees .

5 . SPRUE FORMER LENGTH

Depends on the length of casting ring .. Length of the Sprue former should be such that it keeps the wax pattern about 6 to 8 mm away from the casting ring. Sprue former should be no longer than 2 cm. The pattern should be placed as close to the centre of the ring as possible.

Significance

Short Sprue Length:

The gases cannot be adequately vented to permit the molten alloy to fill the ring completelyleading to Back Pressure Porosity.

Long Sprue Length:

Fracture of investment, as mold will not withstand the impact force of the entering molten alloy.

Top of wax should be adjusted for :

6 mm for gypsum bonded investments .

3 -4 mm for phosphate bonded investments .
TYPES OF SPRUES

I . - Wax . II . Solid

- Plastic . Hollow
- Metal .

Properties-improve with filler content

Physical

Radiopacity depends on ions in silicate glass or the addition of barium sulfate (many systems radiolucent)
Coefficient of thermal expansion is 35 to 45 ppm/C and decreases with increasing filler content
Thermal and electrical insulators

Chemical

Water absorption is 0.5 % to 2.5% and increases with polymer level)
Acidulated topical fluorides (e.g., APF) tend to dissolve glass particles, and thus composites should be protected with petroleum jelly (Vaseline) during those procedures
Color changes occur in resin matrix with time because of oxidation, which produces colored by-products

Mechanical

Compressive strength is 45,000 to 60,000 lb/ in2, which is adequate
Wear resistance-improves with higher filler content, higher percentage of conversion in curing, and use of microfiller, but it is not adequate for some posterior applications
Surfaces rough from wear retain plaque and stain more readily

Biologic

Components may be cytotoxic, but cured composite is biocompatible as restorative filling material

Components 

a. Fillers added to most to control shrinkage
b. Matrix

COMPOSITE RESINS

Components

  • Filler particles-colloidal silica, crystalline silica (quartz), or silicates of various particle sizes (containing Li, AI, Zn, Yr)
  • Matrix-BIS-GMA (or UDMA) with lower molecular weight diluents (e.g., TEGDMA) that correct during polymerization
  • Coupling agent- silane that chemically bonds the surfaces of the filter particles to the polymer matrix

Introduction

The science of dental materials involves a study of the composition and properties of materials and the way in which they interact with the environment in which they are placed

Selection of Dental materials

The process of materials selection should ideally follow a logical sequence involving

(1) analysis of the problem,

(2) consideration of requirements,

(3) consideration of available materials and their properties, leading to

(4) choice of material.

Evaluation of the success or failure of a material may be used to influence future decisions on materials selection.

CASTING
Melting & Casting Technique Melting & Casting requires Heat source to melt the alloy Casting force, to drive the alloy into the mould

Casting Torch Selection Two type of torch tips: Multi-orifice Single-orifice Multi-orifice tip is widely used for metal ceramic alloys. Main advantage is distribution of heat over wide area for uniform heating of the alloy. Single-orifice tip concentrate more heat in one area.Three fuel sources are used for Casting Torch; Acetylene ,Natural Gas ,Propane

CASTING CRUCIBLES
Four types are available ;
1) Clay .
2) Carbon .
3) Quartz .
4) Zirconia –Alumina .

Casting Machines

It is a device which uses heat source to melt the alloy casting force .

Heat sources can be :
1) Reducing flame of a torch .( conventional alloys & metal ceramic alloys )

2) Electricity .(Base metal alloys )

Advantages of electric heating :
-heating is evenly controlled .
-minimal undesirable changes in the alloy composition .
- Appropriate for large labs .

Disadvantage :
Expensive .
Casting machines use :
1) Air pressure .
2) Centrifugal force .
3) Evacuation technique .

Alloys can be melted by :
1) Alloy is melted in a separate crucible by a torch flame & is cast into the mold by centrifugal force .(centrifugal C M )
2) Alloy is melted by resistance heating or by induction furnace & then cast centrifugally by motor or spring action (springwound CM electrical resistance )
3) Alloy is melted by induction heating cast into mold centrifugally by motor or spring action .(Induction CM )
4) Alloy is vacum melted by an argon atmosphere

Torch melting / Centrifugal casting machine
Electrical resistance /Heated casting machine
Melting of the alloy should be done in a graphite or ceramic crucible .

Advantage :
-Oxidation of metal ceramic restorations on
overheating is prevented .
-Help in solidification from tip of the casting to the button surface .

Induction casting machine
Commonly used for melting base metal alloys.

Advantage :
- Highly efficient .
- Compact machine withlow power consumption
-No pre heating needed ,
- safe & reliable.

Direct current arc melting machine

A direct current arc is produced between two electrodes :
The alloy & the water cooled tungsten electrode .Temp used is 4000 degrees .

Disadvanage :
High risk of overheating the alloy .
Vacuum or pressure assisted casting machine
Molten alloy is drawn into the evacuated mold by gravity or vacuum & subjected to aditional pressure
For Titanium & its alloys vacuum heated argon pressure casting machines are used .

Accelerated casting method

This method reduces the time of both bench set of the investment & burnout .
Uses phosphate bonded investments which uses 15 mnts for bench set & 15mnts for burnout by placing in a pre – heated furnace to 815 degrees .

Effect of burnout on gypsum bonded investments
Rate of heating has influence on smoothness & on overall dimensions of the investment
Rapid heating causes cracking & flaking which can cause fins or spines .
Avoid heating gypsum bonded investment above 700 degrees .Complete the wax elimination below that temp .

Effect of burnout on phosphate bonded investments
Usual burnout temp is 750 -1030 degrees.
Although they are strong they are brittle too .
Since the entire process takes a long time two stage burnout & plastic ring can be used .

Explore by Exams