Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Dental Materials

Mercury bioactivity

  • Metallic mercury is the least toxic from and is absorbed primarily through the lungs rather than the GI tract or skin
  • Mercury in the body may come from air, water, food. dental (a low amount). Or medical sources
  •  Half life for mercury elimination from body is 55 days .-
  • mercury toxicity is <50 µm / m3 on average per 40-hour work week.
  • Mercury hypersensitivity is estimated as less than 1 per 100,000,000 persons
  • Indium-containing amalgams can have lower Hg vapor pressures than conventional dental amalgam

Applications

a. Dentulous impressions for casts for prosthodontics

b. Dentulous impressions for pedodontic appliances

c. Dentulous impressions for study models for orthodontics

d. Edentulous impressions for casts for denture construction

Spruing Technique:

Direct Spruing:

The flow of the molten metal is straight(direct) from the casting crucible to pattern area in the ring. Even with the ball reservoir, the Spruing method is still direct. A basic weakness of direct Spruing is the potential for suck-back porosity at the junction of restoration and the Sprue.

Indirect Spruing:

Molten alloy does not flow directly from the casting crucible into the pattern area, instead the alloy takes a circuitous (indirect) route. The connector (or runner) bar is often used to which the wax pattern Sprue formers area attached. Indirect Spruing offers advantages such as greater reliability & predictability in casting plus enhanced control of solidification shrinkage .The Connector bar is often referred to as a “reservoir .

Armamentarium :
1 . Sprue
2 . Sticky wax
3 . Rubber crucible former
4 . Casting ring 
5 . Pattern cleaner 
6 . Scalpel blade & Forceps 
7 . Bunsen burner

INVESTING
Mixing investment with distilled water is done according to the manufacturers ratio in a clean dry bowl without entrapment of the air into the mix.

Mixing methods:
a.    Hand mixing and the use of the vibrator to remove air bubbles.
b.    Vacuum mixing- This is the better method because it removes air bubbles as well as gases that are produced and thus produces a smoother mix.


Methods of investing:
a.    Hand investing
b.    Vacuum investing

Hand investing:

First the mixed investment is applied on all the surfaces of the pattern with a soft brush. Blow off any excess investment gently, thus leaving a thin film of investment over the pattern, then apply again.
Then the coated pattern can be invested by two methods;
1. Placing the pattern in the ring first and then filling the ring full with investment.
2. Filling the ring with the investment first and then force the pattern through into it.

Vacuum investing :

Vacuum investing unit: This consists of the chamber of small cubic capacity from which air can be evacuated quickly and in which casting ring can be placed.
Evacuation of air can be done by electrically or water driven vacuum pump.

Procedure:

The ring filled with investment is placed in the vacuum chamber. Air entry tube is closed. Then the vacuum is applied. The investment will rise with froth vigorously for about 10-15 sec and then settles back. This indicates that air has been extracted from the ring. The pressure is now restored to atmospheric by opening the air entry tap gradually at first and then more rapidly as the investment settles back around the pattern. Then the ring is removed from the chamber and the investment is allowed to set. Modern investing unit does both mixing and investing under vacuum and is considered better than hand mixing and pouring.
Then there are two alternatives to be followed depending upon what type of expansion is to be achieved in order to compensate for metal shrinkage. They are:

1. If hygroscopic expansion of the investment is to be achieved then immediately immerse the filled ring in water at the temperature of 37C.
Or “under controlled water adding technique”. A soft flexible rubber ring is used instead of usual lined metal ring. Pattern is invested as usual. Then specified amount of water is added on top of the investment in the rubber ring and the investment is allowed to set at room temperature. In this way only enough water is added to the investment to provide the desired expansion.

2. If thermal expansion of the investment is to be achieved, then investment is allowed to set by placing the ring on the bench for 1 hour or as recommended by the manufacturer.

Structure of gypsum products

Components
 

a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)

Denture Cleansers

Use -  for removal of soft debris by light brushing and then rinsing of denture; hard deposits require professional repolishing

a. Alkaline perborates-do not remove bad stains; may harm liners .
b. Alkaline peroxides-harmful to denture liners
c. Alkaline hypochlorites-may cause bleaching, corrode base-metal alloys, and leave residual taste on appliance
d. Dilute acids-may corrode base-metal alloys
e. Abrasive powders and creams-can abrade denture surfaces

Denture cleaning Method

a. Full dentures without soft liners-immerse denture in solution of one part 5% sodium hypochlorite in three parts of water
b. Full or partial dentures without soft-liners immerse denture in solution of  1 teaspoon of hypochlorite with 2 teaspoons of  glassy phosphate  in a half of a glass of water
c. Lined dentures -- clean any soft liner with a cotton swab and cold water while cleaning the denture with a soft brush

Properties

1. Chemical-can swell plastic surfaces or corrode metal frameworks
2. Mechanical-can scratch the surfaces of denture bases or denture teeth
 

Zinc Phoshate Cement

Uses. Zinc phosphate cement is used both as an intermediate base and as a cementing medium. 

(1) Intermediate base. A thick mix  is used under permanent metallic restoration. This layer of cement protects the pulp from sudden temperature changes that may be transmitted by the metallic restoration. 

(2) Cementing medium. Zinc phosphate cement is used to permanently cement crowns, inlays, and fixed partial dentures upon the remaining tooth structure. A creamy mix of cement is used to seat the restoration or appliance completely into place. The cementing medium does not cement two objects together. Instead, the cement holds the objects together by mechanical interlocking, filling the space between the irregularities of the tooth preparation and the cemented restoration

c. Chemical Composition. 

(1) Powder. primary ingredients - zinc oxide and magnesium oxide. 
(2) Liquid. Phosphoric acid and water in the ratio of two parts acid to one part water. The solution may also contain aluminum phosphate and zinc phosphate Liquids exposed in open bottles will absorb moisture from the air in high humidity. The liquids will lose moisture if humidity is low. Water gain hastens setting; water loss lengthens setting time.
 
PROPERTIES OF ZINC PHOSPHATE CEMENT

a. Advantages. Some advantages of zinc phosphate cement as a cementing medium are:

o    Inconspicuous appearance. 
o    Speed and ease of usage. 
o    Sufficient flow to form a thin layer for the cementing of closely adapted crowns, fixed partial dentures, and inlays. 
o    Low thermal conductivity beneath a metallic restoration.

b. Disadvantages. Some disadvantages of zinc phosphate cement as a cementing medium are:

o    Low crushing strength that varies between 12,000 and 19,000 psi. 
o    Slight solubility in mouth fluids. 
o    Opaque material not suitable for visible surfaces. 

c. Strength. The ratio of powder to liquid increases the strength of phosphate cements to a certain point. For this reason, the dental specialist must use as thick a mix as practical for the work being performed. 

SETTING REACTIONS OF ZINC PHOSPHATE CEMENT 

a. Chemical Reaction. The chemical reaction that takes place between the powder and liquid of setting phosphate cement produces heat. The amount of heat produced depends upon the rate of reaction, the size of the mix, and the amount of heat extracted by the mixing slab. 

b. Powder to Liquid Ratio. The less powder used in ratio to the liquid, the longer the cement will take to harden. Good technique minimizes the rise in temperature and acidity of the setting cement that can injure the pulp. Generally, for increased strength, decreased shrinkage, and resistance to solubility, it is advisable to blend as much powder as possible to reach the desired consistencies. 

c. Setting Time. The setting time of zinc phosphate cement is normally between 5 and 9 minutes. 
 Lower the temperature of the glass mixing slab to between 65° and 75° F (18° to 24° C), if the glass mixing slab is not already cooled below the temperature at which moisture will condense on it. → Blend the powder slowly. →  Mix the powder over a large area of the cool slab. →  Use a longer mixing time, within optimum limits. 
 
Precautions.
The following precautions should be observed. 

o    Prevent loss or gain of moisture in liquid cement by keeping bottles tightly stoppered. 
o    Dispense drops only when ready to mix. 
o    Use a cool, dry glass slab (65° to 75° F). 
o    Use the same brand of powder and liquid. 
o    Add increments of powder slowly. 
o    Use the maximum amount of powder to obtain the desired consistency. 

(To incorporate the most powder, the material should be mixed with a moderate circular motion over a large area of the slab, turning the spatula often.) 

Explore by Exams