NEET MDS Lessons
Dental Materials
Lost Wax Process
The lost wax casting process is widely used as it offers asymmetrical casting withnvery fine details to be manufactured relatively inexpensively. The process involves producing a metal casting using a refractory mould made from a wax replica pattern.
The steps involved in the process or the lost wax casting are:
1 . Create a wax pattern of the missing tooth / rim
2 . Sprue the wax pattern
3 . Invest the wax pattern
4 . Eliminate the wax pattern by burning it (inside the furnace or in hot water). This will create a mould.
5 . Force molten metal into the mould - casting.
6 . Clean the cast.
7 . Remove sprue from the cast
8 . Finish and polish the casting on the die .
The lost-wax technique is so named because a wax pattern of a restoration is invested in a ceramic material, then the pattern is burned out ("lost") to create a space into which molten metal is placed or cast. The entire lost-wax casting process .
Wax pattern removal:
Sprue former can be used to remove the pattern. If not the pattern is removed with a sharp probe. Then the sprue former is attached to it. The pattern should be removed directly in line with the principle axis of the tooth or the prepared cavity. Any rotation of the pattern will distort it. Hollow sprue pin is advisable because of its greater retention to the pattern.
WETTABILITY
To minimise the irregularities on the investment & the casting a wetting agent can be used .
FUNCTIONS OF A WETTING AGENT
1 . Reduce contact angle between liquid & wax surface .
2 .Remove any oily film left on wax pattern .
Glass Ionomer Cements
Applications
a. Class V restorations-resin-modified glass ionomers for geriatric dentistry
b. Class II restorations-resin-modified glass ionomers, metal-modified glass ionomers in pediatric dentistry
c. Class III restorations-resin-modified glass ionomers
d. permanent cementing of inlays, crowns, bridges, and/or orthodontic band/brackets. In addition, it can be used as a cavity liner and as a base.
Classification by composition
a. Glass ionomer-limited use
b. Metal-modified glass ionomer-limited use
c. Resin-modified glass ionomer-popular use
Components
a. Powder-aluminosilicate glass
b. Liquid-water solution of copolymers (or acrylic acid with maleic, tartaric, or itaconic acids) and water-soluble monomers (e.g., HEMA)
Reaction (may involve several reactions and stages of setting)
a. Glass ionomer reaction (acid-base reaction of polyacid and ions released from aluminosilicate glass particles)
- Calcium, aluminum, fluoride, and other ions released by outside of powder particle dissolving in acidic liquid
- Calcium ions initially cross-link acid functional copolymer molecules
- Calcium cross-links are replaced in 24 to 48 hours by aluminum ion cross-links, with increased hardening of system
- If there are no other reactants in the cement (e.g., resin modification), then protection from saliva is required during the first 24 hours
b. Polymerization reaction (polymerization of double bonds from water-soluble monomers and/or pendant groups on copolymer to form cross-linked matrix)
- Polymerization reaction can be initiated with chemical (self-curing) or light-curing steps
- Cross-linked polymer matrix ultimately interpenetrates glass ionomer matrix
Manipulation
a. Mixing-powder and liquid components may be manually mixed or may be precapsulated for mechanical mixing
b. Placement-mixture is normally syringed into place
c. Finishing-can be immediate if system is resin-modified (but otherwise must be delayed 24 to 72 hours until aluminum ion replacement reaction is complete)
d. Sealing-sealer is applied to smoothen the surface (and to protect against moisture affecting the glass ionomer reaction)
Properties
1. Physical
-Good thermal and electrical insulation
-Better radiopacity than most composites
-Linear coefficient of thermal expansion and contraction is closer to tooth structure than for composites (but is less well matched for resin-modified systems)
-Aesthetics of resin-modified systems are competitive with composites
2. Chemical
-Reactive acid side groups of copolymer molecules may produce chemical bonding to tooth structure
-Fluoride ions are released
(1) Rapid release at first due to excess fluoride ions in matrix
(2) Slow release after 7 to 30 days because of slow diffusion of fluoride ions out of aluminosilicate particles
-Solubility resistance of resin-modified systems is close to that of composites
3. Mechanical properties
-Compressive strength of resin-modified systems is much better than that of traditional glass ionomers but not quite as strong as composites
- Glass ionomers are more brittle than composites
4. Biologic properties
- Ingredients are biologically kind to the pulp
- Fluoride ion release discourages secondary canes
Structure of gypsum products
Components
a. Powder (calcium sulfate hemihydrate = CaSO4½H2O)
b. Water (for reaction with powder and dispersing powder)
I . Procedure for single casting :
A 2.5 mm sprue former is recommended
for molar crowns 2.0 mm for premolars & partial coverage crowns .
II . Procedure for multiple casting :
Each unit is joined to a runner bar .
A single sprue feeds the runner bar
4 . SPRUE FORMER DIRECTION
Sprue Should be directed away from the delicate parts of the pattern
It should not be at right angles to a flat surface .(leads to turbulance porosity .)
Ideal angulation is 45 degrees .
5 . SPRUE FORMER LENGTH
Depends on the length of casting ring .. Length of the Sprue former should be such that it keeps the wax pattern about 6 to 8 mm away from the casting ring. Sprue former should be no longer than 2 cm. The pattern should be placed as close to the centre of the ring as possible.
Significance
Short Sprue Length:
The gases cannot be adequately vented to permit the molten alloy to fill the ring completelyleading to Back Pressure Porosity.
Long Sprue Length:
Fracture of investment, as mold will not withstand the impact force of the entering molten alloy.
Top of wax should be adjusted for :
6 mm for gypsum bonded investments .
3 -4 mm for phosphate bonded investments .
TYPES OF SPRUES
I . - Wax . II . Solid
- Plastic . Hollow
- Metal .
Dental Implants
Applications/Use
Single-tooth implants
Abutments for bridges (freestanding, attached to natural teeth)
Abutments for over dentures
Terms
Subperiosteal- below the periosteum -but above the bone (second most frequently used types)
Intramucosal-within the mucosa
Endosseous into the bone (80%of all current types)
Endodontics-through the root canal space and into the periapical bone
Transosteal-through the bone
Bone substitutes -replace. Long bone
Classification by geometric form
Blades
Root forms
Screws
Cylinders
Staples
Circumferential
Others
Classification by materials type
Metallic-titanium, stainless steel, and .chromium cobalt
Polymeric-PMMA
Ceramic hydroxyapatite, carbon, and sapphire
Classification by attachment design
Bioactive surface retention by osseointegration
Nonative porous surfaces for micromechanical retention by osseointegration
Nonactive, nonporous surface for ankylosis. By osseointegration
Gross mechanical retention designs (e.g.. threads, screws, channels, or transverse holes)
Fibrointegration by formation of fibrous tissue capsule
Combinations of the above
Components
a. Root (for. osseointegration)
b. Neck (for epithelial attachment and percutancaus sealing)
c. Intramobile elements (for shock absorption)
d. Prosthesis (for dental form and function)
Manipulation
a. Selection-based on remaining bone architecture and dimensions
b. Sterilization-radiofrequency glow discharge leaves biomaterial surface uncontaminated and sterile; autoclaving or chemical sterilization is contraindicated for some designs
Properties
1. Physical-should have low thermal and electrical conductivity
2. Chemical
a. Should be resistant to electrochemical corrosion
b. Do not expose surfaces to acids (e.g.. APF fluorides).
c. Keep in mind the effects of adjunctive therapies (e.g., Peridex)
3. Mechanical
a. Should be abrasion resistant and have a high modulus
b. Do not abrade during scaling operations (e.g.with metal scalers or air-power abrasion systems like Prophy iet)
4. Biologic-depend on osseointegration and epithelial attachment
Manipulation
Mixing
o P/L types mixed in bowl (plaster and alginate)
o Thermoplastic materials not mixed (compound and agar-agar)
o Paste/paste types hand mixed on pad (zinc oxide-eugenol, polysulfide rubber, silicone rubber, polyether rubber. and poly-vinylsiloxane)
o Paste/paste mixed through a nozzle on an auto-mixing gun (poly-vinylsiloxane)
Placement
o Mixed material carried in tray to mouth (full arch tray, quadrant tray. or triple tray)
o Materials set in mouth more quickly because of higher temperature
Removal - rapid removal of impression encourages deformation to take place elastically rather than permanently (elastic deformation requires about 20 minutes)
Cleaning and disinfection of impressions