NEET MDS Lessons
Dental Materials
Manipulation
Mixing
o P/L types mixed in bowl (plaster and alginate)
o Thermoplastic materials not mixed (compound and agar-agar)
o Paste/paste types hand mixed on pad (zinc oxide-eugenol, polysulfide rubber, silicone rubber, polyether rubber. and poly-vinylsiloxane)
o Paste/paste mixed through a nozzle on an auto-mixing gun (poly-vinylsiloxane)
Placement
o Mixed material carried in tray to mouth (full arch tray, quadrant tray. or triple tray)
o Materials set in mouth more quickly because of higher temperature
Removal - rapid removal of impression encourages deformation to take place elastically rather than permanently (elastic deformation requires about 20 minutes)
Cleaning and disinfection of impressions
COMPOSITE RESINS
Types
- Amount of filler-25% to 65% volume, 45% to 85% weight
- Filler particle size (diameter in microns)
- Macrofill 10 to 100 µm (traditional composites)
- Midi fill- 1 to 10 µm(small particle composites)
- Minifill— 0.l to 1 µm
- Microfill-: 0.01 to 0.1 µm (fine particle composites)
- Hybrid--blend (usually or microfill and midifill or minifill and microfill)
- Polymerization method
- Auto-cured (self-cured)
- Visible light cured
- Dual cured
- Staged cure
- Matrix chemistry
- BIS-GMA type
- Urethane dimethacrylate (UDM or UDMA) type
- TEGDMA-diluent monomer to reduce viscosity
Dental Porcelain and PFM Porcelains
Applications/Use
a. Porcelain inlays and jacket crowns
b. PFM crowns and bridges
c. Denture teeth
Terms
PFM-porcelain fused to metal
Fusing-adherence of porcelain particles into a single porcelain mass
Classification
Dental porcelain is manufactured as a powder. When it is heated to a very high temperature in a special oven, it fuses into a homogeneous mass. The heating process is called baking. Upon cooling, the mass is hard and dense. The material is made in a variety of shades to closely match most tooth colors. Baked porcelain has a translucency similar to that of dental enamel, so that porcelain crowns, pontics, and inlays of highly pleasing appearance can be made. Ingredients of porcelain include feldspar, kaolin, silica in the form of quartz, materials which act as fluxes to lower the fusion point, metallic oxide, and binders. Porcelains are classified into high-, medium-, and low-fusing groups, depending upon the temperature at which fusion takes place.
High-Fusing Porcelains. High-fusing porcelains fuse at 2,400o Fahrenheit or over. They are used for the fabrication of full porcelain crowns (jacket crowns).
Medium-Fusing Porcelains. Medium-fusing porcelains fuse between 2,000o and 2,400o Fahrenheit. They are used in the fabrication of inlays, crowns, facings, and pontics. A pontic is the portion of a fixed partial denture, which replaces a missing tooth.
Low-Fusing Porcelains. Low-fusing porcelains fuse between 1,600o and 2,000o Fahrenheit. They are used primarily to correct or modify the contours of previously baked high- or medium-fusing porcelain restorations. Eg for PFM restorations
Structure
Components
a. Large number of oxides but principally silicon oxide, aluminum oxide. and potassium oxide
b. Oxides are supplied by mixing clay, feldspar, and quartz.
Manipulation
Porcelain powders mixed with water and compacted into position for firing
Shrinkage is 30% on firing because of fusing and so must be made oversized and built up by several firing steps
Properties
1. Physical
a. Excellent electrical and thermal insulation
b. Low coefficient of thermal expansion and contraction
c. Good color and translucency; excellent aesthetics
2. Chemical
a. Not resistant to acids (and can be dissolved by contact with APF topical fluoride treatments)
b. Can be acid-etched with phosphoric acid or hydrofluoric acid for providing microll1echanical retention for cements
3. Mechanical
a. Harder than tooth structure and ,will cause opponent wear
b. Can be polished with aluminum oxide pastes
COMPOSITE RESINS
Components
- Filler particles-colloidal silica, crystalline silica (quartz), or silicates of various particle sizes (containing Li, AI, Zn, Yr)
- Matrix-BIS-GMA (or UDMA) with lower molecular weight diluents (e.g., TEGDMA) that correct during polymerization
- Coupling agent- silane that chemically bonds the surfaces of the filter particles to the polymer matrix
Cement Bases
Applications
• Thermal insulation below a restoration
• Mechanical protection where there is inadequate dentin to support amalgam condensation pressures
Types
• Zinc phosphate cement bases
• Polycarboxylate cement bases
• Glass ionomer cement bases (self-curing and light-curing)
Components
o Reactive powder (chemically basic)
o Reactive liquid (chemically acidic)
Reaction
o Acid-base reaction that forms salts or cross linked matrix
o Reaction may be exothermic
Manipulation-consistency for basing includes more powders, which improves all of the cement properties
Properties
Physical-excellent thermal and electrical insulation
Chemical-much more resistant to dissolution than cement liners
Polycarboxylate and glass ionomer cements are mechanically and chemically adhesive to tooth structure
Solubility of all cement bases is lower than cement liners if they are mixed at higher powder- to-liquid ratios
Mechanical- much higher compressive strengths (12,000 to 30,000 psi)
Light-cured hybrid glass ionomer cements are the strongest
Zinc oxide-eugenol cements are the weakest
Biologic (see section on luting cements for details)
Zinc oxide-eugenol cements are obtundent to the pulp
Polycarboxylate and glass ionomer cements are kind to the pulp
Reaction
PMMA powder makes mixture viscous for manipulation before curing. Chemical accelerators cause decomposition of benzoyl peroxide into free radicals that initiate polymerization of monomer
New PMMA is formed into a matrix that surrounds PMMA powder. Linear shrinkage of 5% to 7% during setting. but dimensions of appliances are not critical
Manipulation
Selection
o Microfilled composites or hybrids for anterior class III, IV, V
o Hybrids or midifills for posterior class I, II, III, V
Conditioning of enamel and / or dentin
Do not apply fluorides before etching.-->Acid-etch --> Rinse for 20 seconds with water --> Air-dry etched area for 20 seconds but do not desiccate or dehydrate --> Apply bonding agent and polymerize
Mixing (if required)--> mix two pastes for 20 to 30 seconds
o Self-cured composite-working time is 60 to 120 seconds after mixing
o Light-cured composite-working time is unlimited (used for most anterior and some posterior composite restorations)
o Dual-cured composite-working time is > 10 minutes
o Two-stage cured composite-working time is >5 minutes
Placement
use plastic instrument or syringe --> Light curing --> Cure incrementally in <2 mm thick layers. Use matrix strip where possible to produce smooth surface and contour composite .Postcure to improve hardness