Talk to us?

Dental Materials - NEETMDS- courses
NEET MDS Lessons
Dental Materials

CRUCIBLE FORMER

It serves as a base for the casting ring during investing .Usually convex in shape.
May be metal , plastic or rubber .
Shape depends on casting machine used .
Modern machines use tall crucible to enable the pattern to be positioned near the end of the casting machine .

Finishing and Polishing

Remove oxygen-inhibited layer .Use stones or carbide burs for gross reduction.Use highly fluted carbide burs or special diamonds for fine reduction.Use aluminum oxide strips or disks for finishing. Use fine aluminum oxide finishing pastes. Microfills develop smoothest finish because of small size of filler particles
 

PHYSICAL PROPERTIES OF MATERIALS

Definite and precise terms are used to describe the physical properties of dental materials.

a. Hardness. Hardness is the measure of the resistance of a metal to indentation or scratching. It is an indication of the strength and wearability of an alloy or metal.

b. Ductility. Ductility is the measure of the capacity of a metal to be stretched or drawn by a pulling or tensile force without fracturing. This property permits a metal to be drawn into a thin wire.

c. Malleability. Malleability is the measure of the capacity of a metal to be extended in all directions by a compressive force, such as rolling or hammering. This property permits a metal to be shaped into a thin sheet or plate.

d. Flexibility and Elasticity. These terms differ in their technical definition but they are very closely related. Flexibility is the characteristic of a metal, which allows it to deform temporarily. The elasticity of a metal is used when it returns to its original shape when the load or force is removed.

e. Fatigue. Fatigue is the property of a metal to tire and to fracture after repeated stressing at loads below its proportional limit.

f. Structure (Crystalline or Grain Structure). Metals are crystalline and many of their physical properties depend largely upon the size and arrangement of their minute crystals called grains.

(1) Grain size. The size of the grains in a solidified metal depends upon the number of nuclei of crystallization present and the rate of crystal growth. In the practical sense, the faster a molten is cooled to solidification, the greater will be the number of nuclei and the smaller will be the grain size. Generally speaking, small grains arranged in an orderly fashion give the most desirable properties.

(2) Grain shape. The shape of the grains is also formed at the time of crystallization. If the metal is poured or forced into a mold before cooling, the grains will be in a flattened state. Metal formed by this method is known as cast metal. If the metal is shaped by rolling, bending, or twisting, the grains are elongated and the metal becomes a wrought wire.

g. Crushing Strength. Crushing strength is the amount of resistance of a material to fracture under compression.

h. Thermal Conductivity. Thermal conductivity is defined as the ability of a material to transmit heat or cold. A low thermal conductivity is desired in restorative materials used on the tooth whereas a high thermal conductivity is desirable where the material covers soft tissue.

ZINC OXIDE AND EUGENOL 

This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.

Chemical Composition.

The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set. 

Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light. 

Physical Properties. 
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi. 

CLINICAL USES OF ZINC OXIDE AND EUGENOL 

Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp. 

Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures. 

Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated. 

Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive. 
 

Mouth Protectors

Use - to protect against effects of blows to chin, top of the head, the face, or grinding of the teeth

Types

o    Stock protectors-least desirable because of poor fit
o    Mouth-formed protectors-improved fit compared with stock type
o    Custom-made protectors-preferred because of durability. low  speech impairment, and comfort


I. Components

a. Stock protectors-thermoplastic copolymer of PYA-PE (polyvinyl acetate-polyethylene copolymer)
b. Mouth-formed protectors-thermoplastic copolymer
c. Custom-made protectors- thermoplastic copolymer, rubber. or polyurethane
2. Reaction-physical reaction of hardening during cooling
3. Fabrication

Alginate impression made of maxillary arch. High-strength stone cast poured immediately. Thermoplastic material is heated in hot water and vacuum-molded to cast .

Mouth protector trimmed to within ½ inch of labial fold, clearance provided at the buccal and labial frena, and edges smoothed by flaming. Gagging, taste, irritation. and impairment of speech are minimized with properly fabricated appliances

4. Instructions for use

a. Rinse before and after use with cold water
b. Clean protector occasionally with soap and cool water
c. Store the protector  in a rigid container
d. Protect from heat and pressure during storage
e. Evaluate protector routinely for evidence of deterioration

Properties

1. Physical-thermal insulators
2. Chemical-absorbs after during use
3. Mechanical-tensile strength, modulus, and hardness decrease after  water absorption, but elongation, tear strength, and resilience increase
4. Biologic-nontoxic as long as no bacterial, fungal, or viral growth occurs on surfaces between uses
 

Principles of cutting, polishing, and surface cleaning

  • Surface mechanics for materials

Cutting-requires highest possible hardness materials to produce cutting

Finishing-requires highest possible hardness materials to produce finishing, except at margins of restorations where tooth structure may be inadvertently affected

Polishing- requires materials with Mohs ./ hardness that is 1 to 2 units above that of substrate

 Debriding-requires materials with Mohs hardness that is less than or equal to that of substrate to prevent scratching

  •    Factors affecting cutting, polishing. and surface cleaning
    • Applied pressure
    • Particle size of abrasive
    •  Hardness of abrasive
    •  Hardness of substrate
  •      Precautions
    • During cutting heat will build up and change the mechanical behavior of the substrate from brittle to ductile and encourage smearing
    • Instruments may transfer debris onto the cut surface from their own surfaces during cutting, polishing, or cleaning operations (this is important for cleaning implant surfaces)

Pit-and-Fissure Dental Sealants

Applications/Use

Occlusal surfaces of newly erupted posterior teeth
Labial surfaces of anterior teeth with fissures
Occlusal surfaces of teeth in older patients with reduced saliva flow (because low saliva increases the susceptibility to caries)

Types

Polymerization method

Self-curing (amine accelerated)
Light curing (light accelerated)

Filler content

Unfilled-most systems are unfilled because filler tends to interfere with wear away from self-cleaning occlusal areas(sealants are designed to wear away, except where there is no self-cleaning action a common misconception is that sealants should be wear resistant)


Components

Monomer-BIS-GMA with TEGDM diluent to facilitate flow into pits and fissures prior to cure
Initiator-benzoyl peroxide (in self-cured) and diketone (in light cured)
Accelerator-amine (In light cured)
Opaque filler-I % titanium dioxide. or other colorant to make the material detectable on tooth surfaces
Reinforcing filler-generally not added because wear resistance is not required within pits and fissures

Reaction-free radical reaction 

Manipulation

Preparation

Clean pits and fissures of organic debris. Do not apply fluoride before etching because it will tend to make enamel more acid resistant. Etch occlusal surfaces, pits, and fissures for 30 seconds (gel) or 60 seconds (liquid) with 37% phosphoric acid . Wash occlusal surfaces for 20 seconds. Dry etched area for 20 seconds with clean air spray. Apply sealant and polymerize

Mixing or dispensing

Self-cured-mix equal amounts of liquids in Dappen dish for 5 seconds with brush applicator. Light cured-dispense from syringe tips 
Placement

-pits, fissures, and occlusal surfaces  --> Allow 60 seconds for self-cured materials to set. 

Finishing

Remove unpolymerized and excess material .Examine hardness of sealant. Make occlusal adjustments where necessary in sealant; some sealant materials are self-adjusting

Properties

Physical

Wetting-low-viscosity sealants wet acid etched tooth structure the best

Mechanical

Wear resistance should not be too great because sealant should be able to wear off of  self-cleaning areas of tooth
Be careful to protect sealants during polishing procedures with air abrading units to prevent sealant loss

Clinical efficacy

Effectiveness is 100% if retained in pits and fissures .Requires routine clinical evaluation for resealing of areas of sealant loss attributable to poor retention .
Sealants resist effects of topical fluorides
 

Explore by Exams