Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Procaine penicillin Procaine penicillin is a combination of benzylpenicillin with the local anaesthetic agent procaine. This combination is aimed at reducing the pain and discomfort associated with a large intramuscular injection of penicillin.

Indications

respiratory tract infections where compliance with oral treatment is unlikely ,syphilis, cellulitis

Stages of anesthesia

Stage I

Analgesia

Still conscious but drowsy

Stage II

Excitement stage

Loss of consciousness, however, irregular ventilation may be present which affects absorption of inhalation agents.

Reflexes may be exaggerated.

This is a very dangerous stage

Stage III

Surgical anesthesia

Loss of spontaneous movement

Regular, shallow respiration

Relaxation of muscles

Stage IV

Medullary paralysis

Death

Excretion
Routes of drug excretion

The most important route of drug elimination from the body is via the kidney

Renal Drug Excretion

- Glomerular Filtration

- Passive Tubular Reabsorption: drugs that are lipid soluble undergo passive reabsorption from the tubule back into the blood.

- Active Tubular Secretion

Factors that Modify Renal Drug Excretion

- pH Dependent Ionization:  manipulating urinary pH to promote the ionization of a drug can decrease passive reabsorption and hasten excretion.

- Competition for Active Tubular Transport

- Age:  Infants have a limited capscity to excrete drugs.

Nonrenal Routes of Drug Excretion
Breast Milk
Bile, Lungs, Sweat and Saliva

The kidney is the major organ of excretion. The lungs become very important for volatile substances or volatile metabolites.

Drugs which are eliminated by the kidney are eliminated by:

a) Filtration - no drug is reabsorbed or secreted.

b) Filtration and some of the drug is reabsorbed.

c) Filtration and some secretion.

d) Secretion

By use of the technique of clearance studies, one can determine the process by which the  kidney handles the drug.

Renal plasma clearance = U x V ml/min U  / Cp = conc. of drug in urine

Cp = conc. of drug in plasma

V = urine flow in ml/min

Renal clearance ratio = renal plasma clearance of drug (ml/min) / GFR (ml/min)

Total Body Clearance = renal + non-renal

Eicosanoid compounds

Prostaglandines, Leukotriens and Thromboxanes.

They are produced in minute amounts by all cells except RBCs and they act locally at the same site of synthesis.
These agents have many physiological processes as mediators and modulators of inflammatory reactions.

Prostaglandines:

Every cell in the body is capable of synthesizing one or more types of PGS. The four major group of PGs are E, F, A, and B.

Pharmacological actions:

stimulation of cyclicAMP production and calcium use by various cells

CVS
PGE2 acts as vasodilator; it is more potent hypotensive than Ach and histamine

Uterous
PGE2 and PGF2α Contract human uterus

Bronchial muscle

PGF2α and thromboxan A2 cause bronchial muscle contraction.

PGE2 & PGI2 cause bronchial muscle dilatation

GIT: PGE2 and PGF2α cause colic and watery diarrhoea

Platelets

Thromboxan A2 is potent induce of platelets aggregation

Kidney

PGE2 and PGI2 increase water, Na ion and K ion excretion (act as diuresis) that cause renal vasodilatation and inhibit
tubular reabsorption

USE
PGI2: Epoprostenol (inhibits platelets aggregation)
PGE1: Alprostadil (used to maintain the potency of arterioles in neonates with congenital heart defects).
PGE2: Dinoproste (used as pessaries to induce labor)
Synthetic analogue of PGE1: Misoprostol (inhibit the secretion of HCl).

COAGULANTS

An agent that produces coagulation (Coagulation is a complex process by which blood forms clots).

ANTICOAGULANTS

An anticoagulant is a substance that prevents coagulation; that is, it stops blood from clotting.

 

Anticoagulants:

Calcium Chelators (sodium citrate, EDTA)

Heparin

Dalteparin Sodium (Fragmin) -Low molecular-weight heparin

Enoxaparin - Low molecular-weight heparin

Tinzaparin Sodium  - Low molecular-weight heparin

Warfarin

Lepirudin - recombinant form of the natural anticoagulant hirudin: potent and specific Thrombin inhibitor

Bivalirudin - analog of hirudin: potent and specific Thrombin inhibitor

Procoagulants:

Desmopressin acetate

Antiplatelet Drugs:

Acetylsalicylic Acid, Ticlopidine, Sulfinpyrazone, Abciximab , Clopidogrel bisulfate

Fibrinolytic Drugs:

Tissue Plasminogen Activator (t-PA, Activase), Streptokinase (Streptase),

Anistreplase, Urokinase

 

Antagonists:

Protamine sulfate, Aminocaproic acid

Pharmacological agents used to treat blood coagulation disorders fall in to three major categories:

1. Anticoagulants: Substances that prevent the synthesis of a fibrin network which inhibits coagulation and the formation of arterial thrombi and thromboembolic clots.

2. Antiplatelet agents: Substances that reduce the adhesion and aggregation of platelets.

3. Fibrinolytic agents: Substances that promote the destruction of already formed blood clots or thrombi by disrupting the fibrin mesh.

Immunosuppressive antibodies can be classified mainly into monoclonal and polyclonal antibodies, targeting specific components of the immune system.

  1. Monoclonal Antibodies:

    • Basiliximab: Targets the IL-2 receptor on T cells, inhibiting T-cell activation. It is FDA approved for use in renal transplantation to prevent acute rejection.

    • Alemtuzumab: Targets CD52, a protein found on the surface of mature lymphocytes. It is used for treating chronic lymphocytic leukemia and as an induction agent in kidney transplantation.

    • Rituximab: Targets CD20 on B cells, leading to B-cell depletion. It is used in various conditions, including non-Hodgkin lymphoma and rheumatoid arthritis.

    • Daclizumab: Targets the IL-2 receptor (CD25) and is used in renal transplantation to prevent acute rejection.

    • Eculizumab: Targets complement component C5, inhibiting the complement cascade. It is used in conditions like paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

  2. Polyclonal Antibodies:

    • Rabbit Antithymocyte Globulin (rATG): A polyclonal antibody that targets multiple T-cell surface markers, leading to T-cell depletion. It is used as an induction agent in kidney transplantation and for treating acute rejection.

    • Equine Antithymocyte Globulin (eATG): Similar to rATG, it targets T cells and is used in transplantation settings.

  3. Mechanisms of Action:

    • Depletion of Immune Cells: Many antibodies work by depleting specific immune cell populations (e.g., T cells or B cells) to reduce the immune response against transplanted organs or in autoimmune diseases.

    • Blocking Activation Signals: Some antibodies block key receptors involved in T-cell activation, preventing the immune response from being initiated.

    • Inhibition of Complement Activation: Antibodies like eculizumab inhibit the complement system, which can contribute to tissue damage in antibody-mediated rejection.

  4. Clinical Applications:

    • Organ Transplantation: Antibodies are commonly used to prevent rejection in kidney, liver, and heart transplants.

    • Autoimmune Diseases: They are also used in treating conditions like rheumatoid arthritis, lupus, and multiple sclerosis.

  5. Potential Side Effects:

    • Infections: Due to immune suppression, patients are at increased risk of infections.
    • Allergic Reactions: Some patients may experience allergic reactions to antibody therapies.
    • Infusion Reactions: These can occur during the administration of monoclonal antibodies, leading to symptoms like fever, chills, and hypotension.

Explore by Exams