NEET MDS Lessons
Pharmacology
Antifungal
There are several classes of antifungal drugs.
The polyenes bind with sterols in the fungal cell wall, principally ergosterol. This causes the cell's contents to leak out and the cell dies. Human (and other animal) cells contain cholesterol rather than ergosterol so are much less suceptible.
Nystatin
Amphotericin B
Natamycin
The imidazole and triazole groups of antifungal drugs inhibit the enzyme cytochrome P450 14α-demethylase. This enzyme converts lanosterol to ergosterol, and is required in fungal cell wall synthesis. These drugs also block steroid synthesis in humans.
Imidazoles:
Miconazole
Ketoconazole
Clotrimazole
The triazoles are newer, and are less toxic and more effective:
Fluconazole
Itraconazole
Allylamines inhibit the enzyme squalene epoxidase, another enzyme required for ergosterol synthesis:
Terbinafine
Echinocandins inhibit the synthesis of glucan in the cell wall, probably via the enzyme 1,3-β glucan synthase:
Caspofungin
Micafungin
Others:
Flucytosine is an antimetabolite.
Griseofulvin binds to polymerized microtubules and inhibits fungal mitosis.
Erythromycin
used for people who have an allergy to penicillins. For respiratory tract infections, it has better coverage of atypical organisms, including mycoplasma. It is also used to treat outbreaks of chlamydia, syphilis, and gonorrhea.
Erythromycin is produced from a strain of the actinomyces Saccaropolyspora erythraea, formerly known as Streptomyces erythraeus.
Mechanism of action Erythromycin prevents bacteria from growing, by interfering with their protein synthesis. Erythromycin binds to the subunit 50S of the bacterial ribosome, and thus inhibits the translocation of peptides.
Erythromycin is easily inactivated by gastric acids, therefore all orally administered formulations are given as either enteric coated or as more stable salts or esters. Erythromycin is very rapidly absorbed, and diffused into most tissues and phagocytes. Due to the high concentration in phagocytes, erythromycin is actively transported to the site of infection, where during active phagocytosis, large concentrations of erythromycin are released.
Most of erythromycin is metabolised by demethylation in the liver. Its main route elimination route is in the bile, and a small portion in the urine.
Erythromycin's half-life is 1.5 hours.
Side-effects. More serious side-effects, such as reversible deafness are rare. Cholestatic jaundice, Stevens-Johnson syndrome and toxic epidermal necrosis are some other rare side effects that may occur.
Contraindications Earlier case reports on sudden death prompted a study on a large cohort that confirmed a link between erythromycin, ventricular tachycardia and sudden cardiac death in patients also taking drugs that prolong the metabolism of erythromycin (like verapamil or diltiazem)
erythromycin should not be administered in patients using these drugs, or drugs that also prolong the QT time.
DIAGNOSIS
Affective disorders:
I. unipolar depression – depression alone
bipolar affective disorder – alternating II. bipolar affective disorder – alternating depression and mania
Diagnosis is based on
At least five of the following for 2 weeks
I. Depressed mood most of the day
II. Markedly diminished interest or pleasureII. Markedly diminished interest or pleasure
III. Significant weight loss or weight
IV. Insomnia or hypersomnia
V. Psychomotor agitation or retardation
VI. Fatigue or loss of energy
VII. Feelings of worthlessness or excessive guilt
VIII. Diminished ability to think or concentrate,
IX. Recurrent thoughts of death
Underlying biological basis for depression is a deficiency of the monoamine neurotransmitters norepinephrine and/or serotonin in the brain.
Non-barbiturate sedatives
1- Chloral hydrate is trichlorinated derivative of acetaldehyde that is converted to trichlorethanol in the body. It induces sleep in about 30 minutes and last up to 6 hr. it is irritant to GIT and produce unpleasant taste sensation.
2- Ramelteon melatonin receptors are thought to be involved in maintaining circadian rhythms underlying the sleep-wake cycle. Ramelteon is an agonist at MT1 and MT2 melatonin receptors , useful in patients with chronic insomnia with no rebound insomnia and
withdrawal symptoms
3- Ethanol (alcohol) it has antianxiety sedative effects but its toxic potential out ways its benefits.
Ethanol is a CNS depressant producing sedation and hypnosis with increasing dose.
Absorption of alcohol taken orally is rapid, it is highly lipid soluble, presence of food delayed its absorption, maximal blood concentration depend on total dose, sex, strength of the solution, the time over which it is taken, the presence of food and speed of metabolism.
Alcohol in the systemic circulation is oxidized in the liver principally 90% by alcohol dehydrogenase to acetaldehyde and then by acetaldehyde dehydrogenase to products that enter the citric cycle.
Alcohol metabolism by alcohol dehydrogenase follows first order kinetics in the smallest doses. Once the blood concentration exceeds about 10 mg/100 ml, the enzymatic processes are saturated and elimination rate no longer increases with increasing
concentration but become steady at 10-15 ml/ 1 hr. in occasional drinkers.
Thus alcohol is subject to dose dependant kinetics i.e. saturation or zero order kinetics.
Actions
- Ethanol acts on CNS in a manner similar to volatile anesthetic.
- It also enhances GABA so stimulating flux of chloride ions through ion channels.
- Other possible mode of action involve inhibition of Ca-channels and inhibition of excitatory NMDA receptors.
- Ethanol has non selective CNS depressant activity.
- It causes cutaneous vasodilatation, tachycardia and myocardial depression
Estimation of the risk of anesthesia (American Society of Anesthesiologists scale)
• ASA 1: healthy patient.
• ASA 2: patient with stable, treated illness like arterial hypertension, diabetes melitus, asthma bronchiale, obesity
• ASA 3: patient with systemic illness decreasing sufficiency like heart illness, late infarct
• ASA 4: patient with serious illness influencing his state like renal insuficiency, unstable hypertension, circulatory insuficiency
• ASA 5: patient in life treatening illness
• ASA 6: brain death- potential organ donor
Loop (High Ceiling) Diuretics
Loop diuretics are diuretics that act at the ascending limb of the loop of Henle in the kidney. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or renal insufficiency. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.
Agent: Furosemide
Mechanism(s) of Action
1. Diuretic effect is produced by inhibit of active 1 Na+, 1 K+, 2 Cl- co-transport (ascending limb - Loop of Henle).
o This produces potent diuresis as this is a relatively important Na re-absorption site.
2. Potassium wasting effect
a. Blood volume reduction leads to increased production of aldosterone
b. Increased distal Na load secondary to diuretic effect
c. a + b = increase Na (to blood) for K (to urine) exchange which produces indirect K wasting (same as thiazides but more likely)
3. Increased calcium clearance/decreased plasma calcium
o secondary to passive decreases in loop Ca++ reabsorption.
o This is linked to inhibition of Cl- reabsorption.
o This is an important clinical effect in patients with ABNORMAL High Ca++
Gastric acid secretion inhibitors (antisecretory drugs):
HCl is secreted by parietal cells of the gastric mucosa which contain receptors for acetylcholine (muscarinic receptors: MR), histamine (H2R), prostaglandins (PGR) and gastrin (GR) that stimulate the production, except PGs which inhibit gastric acid production.
Therefore, antagonists of acetylcholine, histamine and gastrin inhibit gastric acid secretion (antisecretory). On the other hand, inhibitors of PGs biosynthesis such as NSAIDs with reduce cytoprotective mechanisms and thus promote gastric mucosal erosion. Also, the last step in gastric acid secretion from parietal cells involve a pump called H+ -K+-ATPase (proton pump). Drugs that block this pump will inhibit gastric acid secretion. Antisecretory drugs include:
1. Anticholinergic agents such as pirenzepine, dicyclomine, atropine.
2. H2-receptors blocking agents such as Cimetidine, Ranitidine, Famotidine, Nizatidine (the pharmacology of these agents has been discussed previously).
3. Gastrin-receptor blockers such as proglumide.
4. Proton pump inhibitors such as omeprazole, lansoprazole.
Major clinical indications of antisecretory drugs:
• Prevention & treatment of peptic ulcer disease.
• Zollinger Ellison syndrome.
• Reflux esophagitis.