NEET MDS Lessons
Pharmacology
Antiplatelet Drugs:
Whereas the anticoagulant drugs such as Warfarin and Heparin suppress the synthesis or activity of the clotting factors and are used to control venous thromboembolic disorders, the antithrombotic drugs suppress platelet function and are used primarily for arterial thrombotic disease. Platelet plugs form the bulk of arterial thrombi.
Acetylsalicylic acid (Aspirin)
• Inhibits release of ADP by platelets and their aggregation by acetylating the enzymes (cyclooxygenases or COX) of the platelet that synthesize the precursors of Thromboxane A2 that is a labile inducer of platelet aggregation and a potent vasoconstrictor.
• Low dose (160-320 mg) may be more effective in inhibiting Thromboxane A2 than PGI2 which has the opposite effect and is synthesized by the endothelium.
• The effect of aspirin is irreversible.
Thiopental
- A barbiturate that is generally used to induce anesthesia.
- The temporal course of effects from induction to recovery depends almost entirely upon progressive redistribution.
- Metabolic degradation or excretion during anesthesia is negligible, except in the case of methohexital.
- The barbiturates produce minimal analgesia.
- Respiratory depression may be pronounced.
- Cardiac output is reduced while total peripheral resistance is increased.
- It does not sensitize the heart to catecholamines.
- It may cause bronchiospasm, especially in asthmatics.
- It is contraindicated in acute intermittent porphyria.
GENERAL ANESTHETICS
General anesthesia often involves more than one drug to get different, favourable effects.
Premedication is often used to:
1. Treat anxiety - Benzodiazapenes
2. Reduce pain - Opiod anaglesics such as morphine
3. Produce muscle paralysis -E.g. Tubocurare
4. Reduce secretions
Induction of anesthesia is often done via intravenous anesthetics, which are quick and easy to administer.
Maintenance of anesthesia involves inhalation agents.
Prototype Agents:
Volatile Anesthetics:
• Nitrous Oxide
• Ether
• Halothane
• Enflurane
• Isoflurane
Injectable Anesthetics:
• Thiopental
• Ketamine
• Etomidate
• Propofol
• Midazolam
Insulin
Insulin is only given parenterally (subcutaneous or IV) Various preparations have different durations of action
Preparation |
Onset (hrs) |
Peak (hrs) |
Duration (hrs) |
Lispro (rapid-acting) | 15 min | 0.5-1.5 | 3-4 |
Regular (short-acting) | 0.5-1 | 2-4 | 5-7 |
NPH (intermediate) | 1-2 | 6-12 | 18-24 |
Glargine (long-acting) | 1 | None | >24 |
Mechanism
bind transmembrane insulin receptor
activate tyrosine kinase
phosphorylate specific substrates in each tissue type
liver
↑ glycogenesis
store glucose as glycogen
muscle
↑ glycogen and protein synthesis
↑ K+ uptake
fat
increase triglyceride storage
Clinical use
type I DM
type II DM
life-threatening hyperkalemia
increases intracellular K+
stress-induced hyperglycemia
Toxicity
hypoglycemia
hypersensitivity reaction (very rare)
Insulin Synthesis
first generated as preproinsulin with an A chain and B chain connected by a C peptide.
c-peptide is cleaved from proinsulin after packaging into vesicles leaving behind the A and B chains
Propofol -Intravenous Anesthetics
- A nonbarbiturate anesthetic
- It is very lipid-soluble, acts rapidly and has a short recovery time.
- It is associated with less nausea and vomiting than some of the other IV anesthetics.
- Propofol is very similar to thiopental in its effects on the cardiorespiratory system.
- It does not have any analgesic properties but lowers the dose of opioid needed when the two agents are used in combination.
- The most significant adverse cardiovascular effect associated with propofol administration is hypotension. It should be used with caution in patients with cardiac disease.
CENTRAL NERVOUS SYSTEM PHARMACOLOGY
Antipsychotic Drugs
1. Phenothiazines
a. Aliphatic derivatives
(1) Chlorpromaxine
b. Piperidine derivatives
(1) Thioridazine
(2) Mesoridazine
c. Piperazine derivatives
(1) Fluphenazine
(2) Perphenazine
(3) Prochlorperazine
(4) Trifluoperazine
2. Haloperidol resembles the piperazine phenothiazines.
3. Thiothixene resembles the piperazine phenothiazines.
4. Others (e.g., loxapine, pimozide).
5. Newer and more atypical antipsychotic drugs:
a. Clozapine
b. Olanzapine
c. Quetiapine
d. Risperidone
e. Ziprasidone
f. Aripiprazole
Antidepressant Drugs
Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.
Treatment takes several weeks to reach full clinical efficacy.
1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline
2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram
3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine
4. Miscellaneous antidepressants
a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort
Antimania Drugs
These drugs are used to treat manic-depressive illness.
A. Drugs
1. Lithium
2. Carbamazepine
3. Valproic acid
Sedative Hypnotics
1. Benzodiazepines
2. Barbiturates
3. Zolpidem and zaleplon
4. Chloral hydrate
5. Buspirone
6. Other sedatives (e.g., mephenesin, meprobamate, methocarbamol, carisoprodol, cyclobenzaprine)
7. Baclofen
8. Antihistamines (e.g., diphenhydramine)
9. Ethyl alcohol
Antiepileptic Drugs
Phenytoin
Carbamazepine
Phenobarbital
Primidone
Gabapentin
Valproic acid
Ethosuximide
Anti-Parkinson Drugs
a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.
ANTIBIOTICS
Chemotherapy: Drugs which inhibit or kill the infecting organism and have no/minimum effect on the recipient.
Antibiotic these are substances produced by microorganisms which suppress the growth of or kill other micro-organisms at very low concentrations.
Anti-microbial Agents: synthetic as well as naturally obtained drugs that attenuate micro-organism.
SYNTHETIC ORGANIC ANTIMICROBIAL DRUGS
Sulfonamides
Trimethoprim-sulfamethoxazole
Quinolones – Ciprofloxacin
ANTIBIOTICS THAT ACT ON THE BACTERIAL CELL WALL
Penicillins
Cephalosporins
Vancomycin
INHIBITORS OF BACTERIAL PROTEIN SYNTHESIS
Aminoglycosides - Gentamicin
Antitubercular Drugs: Isoniazid & Rifampin
Tetracyclines
Chloramphenicol
Macrolides – Erythromycin, Azithromycin
Clindamycin
Mupirocin
Linezolid
ANTIFUNGAL DRUGS
Polyene Antibiotics (Amphotericin B, Nystatin and Candicidin)
Imidazole and Triazole Antifungal Drugs
Flucytosine
Griseofulvin
ANTIPROTOZOAL DRUGS
Antimalarial Drugs – Quinine, Chloroquine, Primaquine
Other Antiprotozoal Drugs – Metronidazole, Diloxanide, Iodoquinol
ANTIHELMINTHIC DRUGS
Praziquantel
Mebendazole
Ivermectin
ANTIVIRAL DRUGS
Acyclovir
Ribavirin
Dideoxynucleosides
Protease inhibitors