Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Antidiarrheal

 Antidiarrheal drugs may be given to relieve the symptom (non-specific therapy) or may be given to treat the underlying cause of the symptom (specific therapy). 


Ι. Drugs used for the symptomatic (non-specific) treatment of diarrhoea include: 


• Opiates and opiate derivatives are the most effective (such as morphine), but it is not used because of potentially serious adverse effects. Other agents, such as diphenoxylate and loperamide, are commonly used.

• Adsorbent – demulcent products such as kaolin – pectin preparation may be included in antidiarrheal preparations. Unfortunately, they may adsorb nutrients and other drugs, including the antidiarrheal agents if given concurrently.

• Anticholinergic agents e.g. atropine is occasionally used to decrease abdominal cramping and pain associated with diarrhoea.

ΙΙ. Specific therapy may include the use of antibacterial agents that are recommended for use in carefully selected cases of bacterial enteritis. For example, severe diarrhoea by salmonella, shigella, campylobacter and clostridia species can be treated by antibiotics (ampicillin, chloramphenicol, co-trimoxazole). 

SGLT-2 Inhibitors

canagliflozin
empagliflozin

Mechanism

glucose is reabsorbed in the proximal tubule of the nephron by the sodium-glucose cotransporter 2 (SGLT2)
SGLT2-inhibitors lower serum glucose by increasing urinary glucose excretion
the mechanism of action is independent of insulin secretion or action

Clinical use

type II DM

CARDIAC GLYCOSIDES

Cardiac glycosides (Digitalis)

Digoxin

Digitoxin

Sympathomimetics

Dobutamine

Dopamine

Vasodilators

α-blockers (prazosin)

Nitroprusside

ACE-inhibitors (captopril)

Pharmacology of Cardiac Glycosides

1. Positive inotropic effect (as a result of increase  C.O., the symptoms of CHF subside).

2. Effects on other cardiac parameters

1) Excitability

2) Conduction Velocity; slightly increased in atria & ventricle/significantly

reduced in conducting tissue esp. A-V node and His-Purkinje System

3) Refractory Period; slightly ^ in atria & nodal tissue/slightly v in ventricles

4) Automaticity; can be greatly augmented - of particular concern in ventricle

3. Heart Rate

-Decrease due to 1) vagal stimulation and 2) in the situation of CHF, due to improved hemodynamics

4 Blood Pressure

-In CHF, not of much consequence. Changes are generally secondary to improved cardiac performance.

-In the absence of CHF, some evidence for a direct increase  in PVR due to vasoconstriction.

5. Diuresis

-Due primarily to increase in  renal blood flow as a consequence of positive inotropic effect (increase CO etc.) Possibly some slight direct diuretic effect.

 Mechanism of Action of Cardiac Glycosides

Associated with an interaction with membrane-bound Na+-K+ ATPase (Na-K pump).

Clinical ramifications of an interaction of cardiac glycosides with the Na+ K pump.

I. Increase levels of Ca++, Increase therapeutic and toxic effects of cardiac glycosides

II. Decrease levels of K+ , Increase toxic effects of cardiac glycosides

Therapeutic Uses of Cardiac Glycosides

  • CHF
  • CHF accompanied by atrial fibrillation
  • Supraventricular arrhythmias

Antihypertensives Drugs

CATEGORIES
I.    Diuretics to reduce blood volume 
Chlorothiazide (Diuril)

II. Drugs that interfere with the Renin-Angiotensin System

A. Converting enzyme inhibitors             Captopril , enalapril, Lisinopril

B. Angiotensin receptor antagonists         Saralasin Losartan 

III. Decrease peripheral vascular resistance and/or cardiac output

A. Directly acting vasodilators
1. calcium channel blockers           Nifedipine , Diltiazem,  amlodipine

2. potassium channel activators     Minoxidil 

3. elevation of cGMP                      Nitroprusside 

4. others                                         Hydralazin e

B. Sympathetic nervous system depressants

1. α-blockers                             Prazosin, phentolamine, phenoxybenzamine

2. β-blockers                             Propranolol ,Metoprolol, atenolol

3. norepinephrine synthesis inhibitors     Metyrosine 

4. norepinephrine storage inhibitors     Reserpine
 
5. transmitter release inhibitors         Guanethidine 

6. centrally acting: decrease 
sympathetic outflow
                    Clonidine , methyldopa

Neurophysiology

Nerve fibers exhibit wide range of sensitivity to nerve blockade-in order of increasing resistance to block are the sensations of pain, cold, warmth, touch, pressure, proprioception and motor function

Nerve Fibers:

Types

Size

Speed

Occurrence

A (α)

20 µm

80 - 120

Myelinated (Primarily for muscular activity).

β

8 - 15 µm

 

Myelinated (Touch and pressure)

γ

4 - 8 µm

 

Myelinated (Muscle spindle tone)

δ

3 - 4 µm

10-15

Myelinated (Pain and temperature sensation)

B

4 µm

10-15

Myelinated (Preganglionic autonomic)

C

1-2 µm

1 - 2

Unmyelinated (Pain and temperature sensation)

 

Myelinated = faster conducting

Unmyelinated = slower conducting

- Small non-myelinated fibers (C- pain fibers) and smaller myelinated pre-ganglionic B fibers are more readily blocked than are larger myelinated fibers responsible for muscle activity and touch [A-alpha and A-beta].

- Clinically, a person would notice complete lack of sensation to a pinprick, while at the same time still be able to move their fingers.

Carbamazepine (Tegretol): most common; for generalized tonic-clonic and all partial seizures; especially active in temporal lobe epilepsies

Mechanism: ↓ reactivation of Na channels (↑ refractory period, blocks high frequency cell firing, ↓ seizure spread)

Side effects: induces hepatic microsomal enzymes (can enhance metabolism of other drugs)

Sympatholytics (Antiadrenergic Agents)

PHENOXYBENZAMINE
It is a potent alpha-adrenergic blocking agent 

It effectively prevents the responses mediated by alpha receptors and diastolic blood pressure tends to decrease.
It interferes with the reflex adjustment of blood pressure and produces postural hypotension. 
It increases the cardiac output and decreases the total peripheral resistance.

It is used in the management of pheochromocytoma and also to treat peripheral vasospastic conditions e.g. Raynaud’s disease and shock syndrome.

Phentolamine, another alpha blocker is exclusively used for the diagnosis of pheochromocytoma and for the prevention of abrupt rise in blood pressure during surgical removal of adrenal medulla tumors.

ERGOT ALKALOIDS

 Ergotamine is an  important alkaloid that possesses both vasoconstrictor and alpha-receptor blocking activity. Both ergotamine and dihydroergotamine are used in the treatment of migraine.

METHYSERGIDE

It is a 5-hydroxytryptamine antagonist ). It is effective in preventing an attack of migraine. 

SUMATRIPTAN

It is a potent selective 5-HT 1D  receptor agonist used in the treatment of migraine.

PRAZOSIN
It is an piperazinyl quinazoline effective in the management of hypertension. It is highly selective for α1  receptors. It also reduces the venous return and cardiac output. It is used in essential hypertension, benign prostatic hypertrophy and in Raynaud’s syndrome.
Prazosin lowers blood pressure in human beings by relaxing both veins and resistance vessels but it dilates arterioles more than veins.

TERAZOSIN
It is similar to prazosin but has higher bioavailability and longer plasma t½

DOXAZOSIN
It is another potent and selective α1 adrenoceptor antagonist and quinazoline derivative.
It’s antihypertensive effect is produced by a reduction in smooth muscle tone of peripheral vascular beds.

TAMSULOSIN
It is uroselective α1A  blocker and has been found effective in improving BPH symptoms.

Other drugs used for erectile dysfunction

Sildenafil: It is orally active selective inhibitor of phosphodiesterase type 5 useful in treatment of erectile dysfunction.

Explore by Exams