NEET MDS Lessons
Pharmacology
Macrolide
The macrolides are a group of drugs (typically antibiotics) whose activity stems from the presence of a macrolide ring, a large lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, are attached. The lactone ring can be either 14, 15 or 16-membered. Macrolides belong to the polyketide class of natural products.
The most commonly-prescribed macrolide antibiotics are:
Erythromycin, Clarithromycin, Azithromycin, roxithromycin,
Others are: spiramycin (used for treating toxoplasmosis), ansamycin, oleandomycin, carbomycin and tylocine.
There is also a new class of antibiotics called ketolides that is structurally related to the macrolides. Ketolides such as telithromycin are used to fight respiratory tract infections caused by macrolide-resistant bacteria.
Non-antibiotic macrolides :The drug Tacrolimus, which is used as an
immunosuppressant, is also a macrolide. It has similar activity to cyclosporine.
Uses : respiratory tract infections and soft tissue infections.
Beta-hemolytic streptococci, pneumococci, staphylococci and enterococci are usually susceptible to macrolides. Unlike penicillin, macrolides have shown effective against mycoplasma, mycobacteria, some rickettsia and chlamydia.
Mechanism of action: Inhibition of bacterial protein synthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl-tRNA. This action is mainly bacteriostatic, but can also be bactericidal in high concentrations
Resistance : Bacterial resistance to macrolides occurs by alteration of the structure of the bacterial ribosome.
Fentanyl (Sublimaze)
- Related chemically to meperidine.
- Approximately 80 times more potent than morphine.
- Duration of action very short (t1/2 20 min).
- Used mainly following general anesthesia.
- Neurolept analgesia: Fentanyl & Droperidol (Innovar)
- fentanyl in analgesic (2-10 µg/kg), or anaesthetic (30-100 µg/kg) doses seldom causes significant decreases in blood pressure when given alone, even in patients with poor LV function
- hypotension following fentanyl is mostly due to bradycardia and can be prevented by the use of anticholinergics, sympathomimetics or agents such as pancuronium this is more likely to occur in patients with high pre-existing sympathetic tone
- hypertension is the commonest disturbance with high dose fentanyl anaesthesia, usually accompanying intubation, sternotomy, or aortic root dissection
Classification
1. Natural Alkaloids of Opium
Phenanthrenes -> morphine, codeine, thebaine
Benzylisoquinolines -> papaverine, noscapine
2. Semi-synthetic Derivatives
diacetylmorphine (heroin) hydromorphone, oxymorphone hydrocodone, oxycodone
3. Synthetic Derivatives
phenylpiperidines pethidine, fentanyl, alfentanyl, sufentnyl
benzmorphans pentazocine, phenazocine, cyclazocine
propionanilides methadone
morphinans levorphanol
Use of local anesthetics during pregnancy
Local anesthetics (injectable)
Drug FDA category
Articaine C
Bupivacaine C
Lidocaine B
Mepivacaine C
Prilocaine B
Vasoconstrictors
Epinephrine 1:200,000 or 1:100,000 C (higher doses)
Levonordefrin 1:20,000 Not ranked
Local anesthetics (topical)
Benzocaine C
Lidocaine B
Immunosuppressive drugs are essential in managing various medical conditions, particularly in preventing organ transplant rejection and treating autoimmune diseases. They can be classified into five main groups:
-
Glucocorticoids: These are steroid hormones that reduce inflammation and suppress the immune response. They work by inhibiting the production of inflammatory cytokines and reducing the proliferation of immune cells. Common glucocorticoids include prednisone and dexamethasone. Their effects include:
-
Mechanism of Action: Glucocorticoids inhibit the expression of genes coding for pro-inflammatory cytokines (e.g., IL-1, IL-2, TNF-α).
-
Clinical Uses: They are used in conditions like rheumatoid arthritis, lupus, and to prevent transplant rejection.
-
Side Effects: Long-term use can lead to osteoporosis, weight gain, diabetes, and increased risk of infections.
-
-
Cytostatic Drugs: These agents inhibit cell division and are often used in cancer treatment as well as in autoimmune diseases. They include:
-
Examples: Cyclophosphamide, azathioprine, and methotrexate.
-
Mechanism of Action: They interfere with DNA synthesis and cell proliferation, particularly affecting rapidly dividing cells.
-
Clinical Uses: Effective in treating cancers, systemic lupus erythematosus, and other autoimmune disorders.
-
Side Effects: Can cause bone marrow suppression, leading to increased risk of infections and anemia.
-
-
Antibodies: This group includes monoclonal and polyclonal antibodies that target specific components of the immune system.
-
Types:
- Monoclonal Antibodies: Such as basiliximab and daclizumab, which target the IL-2 receptor to prevent T-cell activation.
- Polyclonal Antibodies: These are derived from multiple B-cell clones and can broadly suppress immune responses.
-
Clinical Uses: Used in organ transplantation and to treat autoimmune diseases.
-
Side Effects: Risk of infections and allergic reactions due to immune suppression.
-
-
Drugs Acting on Immunophilins: These drugs modulate immune responses by binding to immunophilins, which are proteins that assist in the folding of other proteins.
-
Examples: Cyclosporine and tacrolimus.
-
Mechanism of Action: They inhibit calcineurin, a phosphatase involved in T-cell activation, thereby reducing the production of IL-2.
-
Clinical Uses: Primarily used in organ transplantation to prevent rejection.
-
Side Effects: Nephrotoxicity, hypertension, and increased risk of infections.
-
-
Other Drugs: This category includes various agents that do not fit neatly into the other classifications but still have immunosuppressive effects.
-
Examples: Mycophenolate mofetil and sirolimus.
-
Mechanism of Action: Mycophenolate inhibits lymphocyte proliferation by blocking purine synthesis, while sirolimus inhibits mTOR, affecting T-cell activation and proliferation.
-
Clinical Uses: Used in transplant patients and in some autoimmune diseases.
-
Side Effects: Gastrointestinal disturbances, increased risk of infections, and potential for malignancies.
-
Ketamine
- Causes a dissociative anesthesia.
- Is similar to but less potent than phencyclidine.
- Induces amnesia, analgesia, catalepsy and anesthesia, but does not induce convulsions.
- The principal disadvantage of ketamine is its adverse psychic effects during emergence from anesthesia. These include: hallucinations, changes in mood and body image.
- During anesthesia, many of the protective reflexes are maintained, such as laryngeal, pharyngeal, eyelid and corneal reflexes.
- Muscle relaxation is poor.
- It is not indicated for intracranial operations because it increases cerebrospinal fluid pressure.
- Respiration is well maintained.
- Arterial blood pressure, cardiac output, and heart rate are all elevated.
Aminoglycoside
Aminoglycosides are a group of antibiotics that are effective against certain types of bacteria. They include amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, and tobramycin. Those which are derived from Streptomyces species
Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Streptomycin was the first effective drug in the treatment of tuberculosis, though the role of aminoglycosides such as streptomycin and amikacin have been eclipsed (because of their toxicity and inconvenient route of administration) except for multiple drug resistant strains.
Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis.
Because of their potential for ototoxicity and renal toxicity, aminoglycosides are administered in doses based on body weight. Blood drug levels and creatinine are monitored during the course of therapy.
There is no oral form of these antibiotics: they are generally administered intravenously, though some are used in topical preparations used on wounds.
Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses.