NEET MDS Lessons
Pharmacology
Roxithromycin
It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin is derived from erythromycin, containing the same 14-membered lactone ring. However, an N-oxime side chain is attached to the lactone ring.
Roxithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Legionella pneumophilae.
When taken before a meal, roxithromycin is very rapidly absorbed, and diffused into most tissues and Phagocytes Only a small portion of roxithromycin is metabolised. Most of roxithromycin is secreted unchanged into the bile and some in expired air
Azithromycin
Azithromycin is the first macrolide antibiotic belonging to the azalide group. Azithromycin is derived from erythromycin by adding a nitrogen atom into the lactone ring of erythromycin A, thus making lactone ring 15-membered.
Azithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Hemophilus influenzae.
azithromycin is acid-stable and can therefore be taken orally without being protected from gastric acids.
Main elimination route is through excretion in to the biliary fluid, and some can also be eliminated through urinary excretion
EPHEDRINE
It act indirectly and directly on α and β receptors. It increases blood pressure both by peripheral vasoconstriction and by increasing the cardiac output. Ephedrine also relaxes the bronchial smooth muscles.
Ephedrine stimulates CNS and produces restlessness, insomnia, anxiety and tremors.
Ephedrine produces mydriasis on local as well as systemic administration.
Ephedrine is useful for the treatment of chronic and moderate type of bronchial asthma, used as nasal decongestant and as a mydriatic without cycloplegia. It is also useful in preventing ventricular asystole in Stokes Adams syndrome.
GLP-1 analogs
Exenatide
Mechanism
GLP-1 is an incretin released from the small intestine that aids glucose-dependent insulin secretion
basis for drug mechanism is the observation that more insulin secreted with oral glucose load compared to IV
Exenatide is a GLP-1 agonist
↑ insulin
↓ glucagon release
the class of dipeptidyl peptidase inhibitors ↓ degradation of endogenous GLP-1
e.g.) sitagliptin, -gliptins
Clinical use
type II DM
Toxicity
nausea, vomiting
pancreatitis
hypoglycemia
if given with sulfonylureas
Loop (High Ceiling) Diuretics
Loop diuretics are diuretics that act at the ascending limb of the loop of Henle in the kidney. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or renal insufficiency. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.
Agent: Furosemide
Mechanism(s) of Action
1. Diuretic effect is produced by inhibit of active 1 Na+, 1 K+, 2 Cl- co-transport (ascending limb - Loop of Henle).
o This produces potent diuresis as this is a relatively important Na re-absorption site.
2. Potassium wasting effect
a. Blood volume reduction leads to increased production of aldosterone
b. Increased distal Na load secondary to diuretic effect
c. a + b = increase Na (to blood) for K (to urine) exchange which produces indirect K wasting (same as thiazides but more likely)
3. Increased calcium clearance/decreased plasma calcium
o secondary to passive decreases in loop Ca++ reabsorption.
o This is linked to inhibition of Cl- reabsorption.
o This is an important clinical effect in patients with ABNORMAL High Ca++
Gentamicin
Gentamicin is a aminoglycoside antibiotic, and can treat many different types of bacterial infections, particularly Gram-negative infection.
Gentamicin works by binding to a site on the bacterial ribosome, causing the genetic code to be misread.
Like all aminoglycosides, gentamicin does not pass the gastro-intestinal tract, so it can only be given intravenously or intramuscularly.
Gentamicin can cause deafness or a loss of equilibrioception in genetically susceptible individuals. These individuals have a normally harmless mutation in their DNA, that allows the gentamicin to affect their cells. The cells of the ear are particularly sensitive to this.
Gentamicin can also be highly nephrotoxic, particularly if multiple doses accumulate over a course of treatment. For this reason gentamicin is usually dosed by body weight. Various formulae exist for calculating gentamicin dosage. Also serum levels of gentamicin are monitored during treatment.
E. Coli has shown some resistance to Gentamicin, despite being gram-negative
Distribution
Three major controlling factors:
Blood Flow to Tissues: rarely a limiting factor, except in cases of abscesses and tumors.
Exiting the Vascular System: Occurs at capillary beds.
- Typical Capillary Beds - drugs pass between cells
- The Blood-Brain Barrier- Tight junctions here, so drugs must pass through cells. Must then be lipid soluble, or have transport system.
- Placenta - Does not constitute an absolute barrier to passage of drugs. Lipid soluble, nonionized compounds readily pass.
- Protein Binding: Albumin is most important plasma protein in this respect. It always remains in the blood stream, so drugs that are highly protein bound are not free to leave the bloodstream. Restricts the distribution of drugs, and can be source of drug interactions.
Entering Cells: some drugs must enter cells to reach sites of action.