NEET MDS Lessons
Pharmacology
Pharmacodynamics
Pharmacodynamics is the study of what drugs do to the body and how they do it.
Dose-Response Relationships
- Basic Features of the Dose-Response Relationship: The dose-response relationship is graded instead of all-or-nothing (as dose increases, response becomes progressively larger).
- Maximal Efficacy and Relative Potency
- Maximal Efficacy: the largest effects that a drug can produce
- Relative Potency: Potency refers to the amount of drug that must be given to elicit an effect.
- Potency is rarely an important characteristic of a drug.
- Potency of a drug implies nothing about its maximal efficacy.
Kinins
Peptide that are mediated in the inflammation.
Action of kinin:
On CVS: vasodilatation in the kidneys, heart, intestine, skin, and liver. It is 10 times active than histamine as vasodilator.
On exocrine and endocrine glands: kinin modulate the tone of pancreas and salivery glands and help regulate GIT motility, also affect the transport of water and electrolytes, glucose and amino acids through epithelial cell transport.
NATURAL ANTICOAGULANTS:
1. PGI-2.
2. Antithrombin.
3. Protein-C.
4. TFPI.
5. Heparin.
6. Fibrinolytic system.
Inhalational Anesthetics
The depth of general anesthesia is directly proportional to the partial pressure of the anesthetic agent in the brain. These agents enter the body through the lungs, dissolve in alveolar blood and are transported to the brain and other tissues.
A. Rate of induction and rate of recovery from anesthesia:
1. The more soluble the agent is in blood, the more drug it takes to saturate the blood and the more time it takes to raise the partial pressure and the depth of anesthesia.
2. The less soluble the agent is in blood, the less drug it takes to saturate the blood and the less time it takes to raise the partial pressure and depth of anesthesia.
B. MAC (minimum alveolar concentration)
The MAC is the concentration of the anesthetic agent that represents the ED50 for these agents. It is the alveolar concentration in which 50% of the patients will respond to a surgical incision.
The lower the MAC the more potent the general anesthetic agent.
C. Inhalation Anesthetic Agents
- Nitrous Oxide
- Ether
- Halothane
- Enflurane
- Isoflurane
Second Generation Cephalosporins
Prototype drug is CEFUROXIME (IV) and CEFUROXIME AXETIL (oral). CEFOXITIN has good activity vs. anaerobes.
1. Expanded activity against gram negative bacilli. Still have excellent activity against gram positive (Staph. and Strep.) bacteria.
Activity for Gram negative bacteria
Neisseria sp. (some gonococci resistant)
H. influenzae (including some ampicillin-resistant strains)
Moraxella catarrhalis (some resistance esp. to cefaclor)
E. coli
Proteus mirabilis
Indole + Proteus (some strains resistant)
Morganella morganii (some strains resistant)
Klebsiella pneumoniae
Serratia sp. (many strains resistant)
2. Anaerobic infections - CEFOXITIN & CEFOTETAN only
Moderate activity against Bacteroides fragilis group.
Good activity for other Bacteroides sp., Peptostreptococcus, Fusobacterium, Clostridium sp
Uses
1. Community-acquired pneumonia - Cefuroxime is widely used for empiric therapy. Has activity vs. many ampicillin-resistant H. influenzae strains.
2. Skin and soft tissue infection
3. Urinary tract infections
4. Upper respiratory tract infections (otitis media, sinusitis). Some resistance to H.influenzae to cefaclor (20-30%).
5. Mixed aerobic & anaerobic infections - Cefoxitin & Cefotetan. Resistance to B.fragilis is increasing.
6. Surgical prophylaxis - Cefoxitin or cefotetan are widely used in cases where mixed aerobic & anaerobic infections may occur, esp. intra-abdominal, colorectal, and gynecologic operations. For cardiovascular and orthopedic procedures, cefuroxime and others may be used, but cefazolin is cheaper and appears to work well.
Specific Agents
Hydralazine [orally effective]
MOA: Not completely understood. Seems to be partially dependent on the release of EDRF and perhaps partially due to K+-channel activation
- in clinical doses action is manifest primarily on vascular smooth muscle (non-vascular muscle is not much affected).
- Re: Metabolism & Excretion. In cases of renal failure the plasma half life may be substantially increased (4-5 fold). One mode of metabolism is
via N-Acetylation (problem of slow acetylators)
Side Effects
- those typical of vasodilation = headache, nasal congestion, tachycardia etc.
- chronic treatment with high doses > 200 mg/day may induce a rheumatoid-like state which may resemble lupus erythematosus.
Minoxidil (Loniten) [orally effective]
MOA: K+-channel agonist
- very effective antihypertensive. Used primarily to treat life-threatening hypertension or hypertension resistant to other agents.
Side effects - growth of hair
Diazoxide (Hyperstat) [used only IV]
MOA: K+-channel agonist
- Administered by rapid IV injection; action appearing after 3-5 min; action may last from 4 to 12 hours.
Nitroprusside (Nipride) [used only IV]
MOA: increase in cGMP
- unlike the other vasodilators, venous tone is substantially reduced by nitroprusside.
- rapid onset of action (.30 sec); administered as an IV-infusion.
- particularly useful for hypertension associated with left ventricular failure.
Drug-Receptor Interactions
Drug Receptor: any functional macromolecule in a cell to which a drug binds to produce its effects. at receptors, drugs mimic or block the action of the body's own regulatory molecules.
Receptors and Selectivity of Drug Action : If a drug interacts with only one kind of receptor, and if that receptor regulates just a few processes, then the effects of the drug will be limited.
Even though a drug is selective for one type of receptor, it can still produce a variety of effects.
Selectivity does not guarantee safety.
Theories of Drug-Receptor Interaction
- Simple Occupancy Theory: Two factors - The intensity of the response to a drug is proportional to the number of receptors occupied by that drug, and the maximal response will occur when all available receptors have been occupied.
- Modified Occupancy Theory: Assumes that all drugs acting at a particular receptor are identical with respect to the ability to bind to the receptor and the ability to influence receptor function once binding has taken place.
• Affinity: The strength of the attraction between a drug and its receptor. Affinity is reflected in potency. (Drugs with high affinity are very potent).
• Intrinsic Activity: The ability of a drug to activate a receptor following binding. Reflected in the maximal efficacy (drugs with high intrinsic activity have high maximal efficacy).