NEET MDS Lessons
Pharmacology
Effects and Toxic Actions on Organ Systems
1. Local anesthetics (dose dependent) interfere with transmission in any excitable tissue (e.g. CNS and CVS).
2. CNS effects
a. Central neurons very sensitive.
b. Excitatory-dizziness, visual and auditory disturbances, apprehension, disorientation and muscle twitching more common with ester type agents.
c. Depression manifested as slurred speech, drowsiness and unconsciousness more common with amide type agents (e.g. lidocaine).
d. Higher concentrations of local anesthetic may eventually produce tonic-clonic[grand mal] convulsions.
e. Very large doses may produce respiratory depression which can be fatal. Artificial respiration may be life-saving.
3.CVS effects
a. Local anesthetics have direct action on the myocardium and peripheral vasculature by closing the sodium channel, thereby limiting the inward flux of sodium ions.
b. Myocardium usually depressed both in rate and force of contraction. Depression of ectopic pacemakers useful in treating cardiac arrhythmias.
c. Concentrations employed clinically usually cause vasodilation in area of injection.
d. Vasoconstrictors such as epinephrine may counteract these effects on myocardium and vasculature.
4. Local Tissue Responses
a. Occasionally focal necrosis in skeletal muscle at injection site, decreased cell motility and delayed wound healing.
b. Tissue hypoxia may be produced by action of excessive amounts of vasoconstrictors.
Monoamine oxidase inhibitors (MAOIs)
e.g. phenelzine, tranylcypromine, moclobemide
- Belong to first generation antidepressants with TCAs
- Most MAOIs irreversibly inhibit the intraneuronal catabolism of norepinephrine and serotonin by MAO-A and MAO-B
- increase brain levels of noradrenaline and 5-HT
- Moclobemide causes selective, reversible inhibition of MAO-A
DRUG INTERACTIONS
Hypertensive crises similar to cheese reaction with OTC cough/cold preparations containing indirect-sympathomimetics
e.g. ephedrine
- Other antidepressants should not be started at least 2 weeks after stopping MAOIs and vice versa due to risk of serotonin syndrome
- Similar interaction with pethidine
ADVERSE DRUG REACTIONS
- Antimuscarinic side effects (e.g. dry mouth, blurred vision, urinary retention)vision, urinary retention)
- Excessive central stimulation causes tremors, excitement and insomnia
- Postural hypotension
- Increased appetite with weight gain
Chloral hydrate
1. Short-acting sleep inducer—less risk of “hangover” effect the next day.
2. Little change on REM sleep.
3. Metabolized to trichloroethanol, an active metabolite; further metabolism inactivates the drug.
4. Used for conscious sedation in dentistry.
5. Can result in serious toxicity if the dose is not controlled.
Pharmacodynamic Effects of NSAIDs
A. Positive
analgesic - refers to the relief of pain by a mechanism other than the reduction of inflammation (for example, headache);
- produce a mild degree of analgesia which is much less than the analgesia produced by opioid analgesics such as morphine
anti-inflammatory - these drugs are used to treat inflammatory diseases and injuries, and with larger doses - rheumatoid disorders
antipyretic - reduce fever; lower elevated body temperature by their action on the hypothalamus; normal body temperature is not reduced
Anti-platelet - inhibit platelet aggregation, prolong bleeding time; have anticoagulant effects
B. Negative
Gastric irritant
Decreased renal perfusion
Bleeding
(CNS effects)
Adverse effects
The two main adverse drug reactions (ADRs) associated with NSAIDs relate to gastrointestinal (GI) effects and renal effects of the agents.
Gastrointestinal ADRs
The main ADRs associated with use of NSAIDs relate to direct and indirect irritation of the gastrointestinal tract (GIT). NSAIDs cause a dual insult on the GIT - the acidic molecules directly irritate the gastric mucosa; and inhibition of COX-1 reduces the levels of protective prostaglandins.
Common gastrointestinal ADRs include:
Nausea, dyspepsia, ulceration/bleeding, diarrhoea
Risk of ulceration increases with duration of therapy, and with higher doses. In attempting to minimise GI ADRs, it is prudent to use the lowest effective dose for the shortest period of time..
Ketoprofen and piroxicam appear to have the highest prevalence of gastric ADRs, while ibuprofen (lower doses) and diclofenac appear to have lower rates.
Commonly, gastrointestinal adverse effects can be reduced through suppressing acid production, by concomitant use of a proton pump inhibitor, e.g. omeprazole
Renal ADRs
NSAIDs are also associated with a relatively high incidence of renal ADRs. The mechanism of these renal ADRs is probably due to changes in renal haemodynamics (bloodflow), ordinarily mediated by prostaglandins, which are affected by NSAIDs.
Common ADRs associated with altered renal function include:
salt and fluid retention,hypertension
These agents may also cause renal impairment, especially in combination with other nephrotoxic agents. Renal failure is especially a risk if the patient is also concomitantly taking an ACE inhibitor and a diuretic - the so-called "triple whammy" effect.
In rarer instances NSAIDs may also cause more severe renal conditions.
interstitial nephritis, nephrotic syndrome, acute renal failure
Photosensitivity
Photosensitivity is a commonly overlooked adverse effect of many of the NSAIDs. These antiinflammatory agents may themselves produce inflammation in combination with exposure to sunlight. The 2-arylpropionic acids have proven to be the most likely to produce photosensitivity reactions, but other NSAIDs have also been implicated including piroxicam, diclofenac and benzydamine.
ibuprofen having weak absorption, it has been reported to be a weak photosensitising agent.
Other ADRs
Common ADRs, other than listed above, include: raised liver enzymes, headache, dizziness.
Uncommon ADRs include: heart failure, hyperkalaemia, confusion, bronchospasm, rash.
The COX-2 paradigm
It was thought that selective inhibition of COX-2 would result in anti-inflammatory action without disrupting gastroprotective prostaglandins.
The relatively selective COX-2 oxicam, meloxicam, was the first step towards developing a true COX-2 selective inhibitor. Coxibs, the newest class of NSAIDs, can be considered as true COX-2 selective inhibitors and include celecoxib, rofecoxib, valdecoxib, parecoxib and etoricoxib.
Acid-Peptic disorders
This group of diseases include peptic ulcer, gastroesophageal reflux and Zollinger-Ellison syndrome.
Pathophysiology of acid-peptic disorders
Peptic ulcer disease is thought to result from an imbalance between cell– destructive effects of hydrochloric acid and pepsin on the one side, and cell-protective effects of mucus and bicarbonate on the other side. Pepsin is a proteolytic enzyme activated in gastric acid (above pH of 4, pepsin is inactive); also it can digest the stomach wall. A bacterium, Helicobacter pylori, is now accepted to be involved in the pathogenesis of peptic ulcer.
In gastroesophageal reflux the acidic contents of the stomach enter into the oesophagus causing a burning sensation in the region of the heart; hence the common name heartburn or other names such as indigestion and dyspepsia.
However, Zollinger-Ellison syndrome is caused by a tumor of gastrin secreting cells of the pancreas characterized by excessive secretion of gastrin that stimulates gastric acid secretion.
These disorders can be treated by the following classes of drugs:
A. Gastric acid neutralizers (antacids)
B. Gastric acid secretion inhibitors (antisecretory drugs)
C. Mucosal protective agents
D. Drugs that exert antimicrobial action against H.pylori
Barbiturates
1. Long-acting. Phenobarbital is used to treat certain types of seizures (see section on antiepileptic drugs).
2. Intermediate-acting. Amobarbital, pentobarbital (occasionally used for sleep), secobarbital.
3. Short-acting. Hexobarbital, methohexital, thiopental—rarely used as IV anesthetics.
Clarithromycin Used to treat pharyngitis, tonsillitis, acute maxillary
sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), skin and skin structure infections, and, in HIV and AIDS patients to prevent, and to treat, disseminated Mycobacterium avium complex or MAC.
Unlike erythromycin, clarithromycin is acid-stable and can therefore be taken orally without being protected from gastric acids. It is readily absorbed, and diffused into most tissues and phagocytes.
Clarithromycin has a fairly rapid first-pass hepatic metabolism, i.e it is metabolised by the liver. However, this metabolite, 14-hydroxy clarithromycin is almost twice as active as clarithromycin.
Contraindications Clarithromycin should be used with caution if the patient has liver or kidney disease, certain heart problems (e.g., QTc prolongation or bradycardia), or a mineral imbalance (e.g., low potassium or magnesium levels).