NEET MDS Lessons
Pharmacology
Third Generation Cephalosporins
Prototype drugs are CEFOTAXIME (IV) and CEFIXIME (oral). CEFTAZIDIME (for Pseudomonas aeruginosa.).
Further expansion of Gm negative spectrum to include hard to treat organisms such as Enterobacter, Serratia, and Pseudomonas.
In addition to better Gm negative spectrum, this group has improved pharmacokinetic properties (longer half-lives) that allow once daily dosing with some agents. In general, activity toward Gm + bacteria is reduced. These are specialty antibiotics that should be reserved for specific uses.
Enterobacteriaciae that are almost always sensitive (>95% sensitive)
E. coli
Proteus mirabilis (indole –)
Proteus vulgaris (indole +)
Klebsiella pneumoniae
Gram negative bacilli that are generally sensitive (>75% sensitive)
Morganella morganii
Providencia retgerri
Citrobacter freundii
Serratia marcescens
Pseudomonas aeruginosa (Ceftazidime only)
Gram negative bacilli that are sometimes sensitive (<75% sensitive)
Enterobacter
Stenotrophomonas (Xanthomonas) maltophilia (Cefoperazone & Ceftazidime only)
Acinetobacter
--> cefepime & cefpirome are promising for these bacteria
Bacteria that are resistant
Listeria monocytogenes
Pseudomonas cepacia
Enterococcus sp.
Uses
1. Gram negative septicemia & other serious Gm – infections
2. Pseudomonas aeruginosa infections (Ceftazidime - 90% effective)
3. Gram negative meningitis - Cefotaxime, Ceftriaxone, Cefepime. For empiric therapy add vancomycin ± rifampin to cover resistant Strep. pneumoniae
4. Gonorrhea - Single shot of Ceftriaxone is drug of choice. Oral cefixime and ceftibuten are also OK.
5. Complicated urinary tract infections, pyelonephritis
6. Osteomyelitis - Ceftriaxone in home health care situations
7. Lyme disease - ceftriaxone in home health care situations
Antidepressant Drugs
Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.
Treatment takes several weeks to reach full clinical efficacy.
1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline
2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram
3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine
4. Miscellaneous antidepressants
a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort
Antimania Drugs
These drugs are used to treat manic-depressive illness.
1. Lithium
2. Carbamazepine
3. Valproic acid
Different Systems of the CNS & their functions
These systems are pathways formed of specific parts of the brain and the neurons connecting them.
They include:
1.The pyramidal system
2.The extrapyramidal system
3.The limbic system
4.The reticular formation
5.The tuberohypophyseal system
The pyramidal system:
It originates from the motor area of the cerebral cortex and passes through the spinal cord, therefore it is also known as the “corticospinaltract”.
It is responsible for the regulation of the fine voluntary movements.
The extrapyramidal system:
It also controls the motor functionbut involves areas other than the corticospinal tract.
It is involved in the regulation of gross voluntary movements, thus it complements the function of the pyramidal system.
The “basal ganglia” constitute an essential part of this system.
Degenerative changes in the pathway running from the “substantianigra”to the “corpus striatum”(or nigrostriatal pathway) may cause tremors and muscle rigidity characteristic of “Parkinson’s disease”.
The limbic system:
The major parts of this system are: the hypothalamus, the basal ganglia, the hippocampus(responsible for short term memory), and some cortical areas.
The limbic system is involved in the control of “behavior”& “emotions”.
The reticular formation:
It is composed of interlacing fibers and nerve cells that run in all directions beginning from the upper part of the spinal cord and extending upwards.
It is important in the control of “consciousness” and “wakefulness”.
The tuberohypophyseal system:
It is a group of short neurons running from the hypothalamusto the hypophysis(pituitary gland) regulating its secretions.
ANTIASTHMATIC AGENTS
Classification for antiasthmatic drugs.
I. Bronchodilators
i. Sympathomimetics (adrenergic receptor agonists)
Adrenaline, ephedrine, isoprenaline, orciprenaline, salbutamol, terbutaline, salmeterol, bambuterol
ii. Methylxanthines (theophylline and its derivatives)
Theophylline
Hydroxyethyl theophylline
Theophylline ethanolate of piperazine
iii. Anticholinergics
Atropine methonitrate
Ipratropium bromide
II. Mast cell stabilizer
Sodium cromoglycate
Ketotifen
III. Corticosteroids
Beclomethasone dipropionate
Beclomethasone (200 µg) with salbutamol
IV. Leukotriene pathway inhibitors
Montelukast
Zafirlukast
Second Generation Cephalosporins
Prototype drug is CEFUROXIME (IV) and CEFUROXIME AXETIL (oral). CEFOXITIN has good activity vs. anaerobes.
1. Expanded activity against gram negative bacilli. Still have excellent activity against gram positive (Staph. and Strep.) bacteria.
Activity for Gram negative bacteria
Neisseria sp. (some gonococci resistant)
H. influenzae (including some ampicillin-resistant strains)
Moraxella catarrhalis (some resistance esp. to cefaclor)
E. coli
Proteus mirabilis
Indole + Proteus (some strains resistant)
Morganella morganii (some strains resistant)
Klebsiella pneumoniae
Serratia sp. (many strains resistant)
2. Anaerobic infections - CEFOXITIN & CEFOTETAN only
Moderate activity against Bacteroides fragilis group.
Good activity for other Bacteroides sp., Peptostreptococcus, Fusobacterium, Clostridium sp
Uses
1. Community-acquired pneumonia - Cefuroxime is widely used for empiric therapy. Has activity vs. many ampicillin-resistant H. influenzae strains.
2. Skin and soft tissue infection
3. Urinary tract infections
4. Upper respiratory tract infections (otitis media, sinusitis). Some resistance to H.influenzae to cefaclor (20-30%).
5. Mixed aerobic & anaerobic infections - Cefoxitin & Cefotetan. Resistance to B.fragilis is increasing.
6. Surgical prophylaxis - Cefoxitin or cefotetan are widely used in cases where mixed aerobic & anaerobic infections may occur, esp. intra-abdominal, colorectal, and gynecologic operations. For cardiovascular and orthopedic procedures, cefuroxime and others may be used, but cefazolin is cheaper and appears to work well.
Carbapenems: Broadest spectrum of beta-lactam antibiotics.
imipenem with cilastatin
meropenem
ertapenem
Monobactams: Unlike other beta-lactams, there is no fused ring attached to beta-lactam nucleus. Thus, there is less probability of cross-sensitivity reactions.
aztreonam
Beta-lactamase Inhibitors No antimicrobial activity. Their sole purpose is to prevent the inactivation of beta-lactam antibiotics by beta-lactamases, and as such, they are co-administered with beta-lactam antibiotics.
clavulanic acid
tazobactam
sulbactam
Ketamine
- Causes a dissociative anesthesia.
- Is similar to but less potent than phencyclidine.
- Induces amnesia, analgesia, catalepsy and anesthesia, but does not induce convulsions.
- The principal disadvantage of ketamine is its adverse psychic effects during emergence from anesthesia. These include: hallucinations, changes in mood and body image.
- During anesthesia, many of the protective reflexes are maintained, such as laryngeal, pharyngeal, eyelid and corneal reflexes.
- Muscle relaxation is poor.
- It is not indicated for intracranial operations because it increases cerebrospinal fluid pressure.
- Respiration is well maintained.
- Arterial blood pressure, cardiac output, and heart rate are all elevated.