Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

A. Sympathetic Nervous System Depressants

1. Antagonists

Both α-adrenoceptor antagonists and β-adrenoceptor antagonists are useful  antihypertensives.

  • α-blocker                     Prazosin, phentolamine, phenoxybenzamine
  • β-blocker                     Propranolol ,Metoprolol, atenolol
  • α/β-blocker                  labetalol

2. Sympathetic depressants

a. Examples of peripherally acting agents include

  • reserpine This agent interferes with the storage of norepinephrine
  • quanethidine This agent interferes with the release of norepinephrine
  • trimethaphan This agent blocks transmission through autonomic ganglia.

b. Examples of Centrally acting agents include

  • alphamethyldopa
  • clonidine. These agents act by decreasing the number of impresses along sympathetic nerves.

Adverse Effect

include nasal congestion, postural hypotension, diarrhea, sexual dysfunction, dry mouth. sedation and drowsiness.

B. Directly Acting Vasodilators

Act on vascular smooth muscle cells independently of adrenergic nerves and adrenergic receptors.

Relaxation of vascular smooth muscle which leads to a decrease in peripheral vascular resistance.

Sites of action of vasodilators are many. For example

 Calcium Channel Blocker’s  MOA

. Decrease automaticity & conduction thru SA & AV nodes

. Decreased myocardial contractility

. Decreased peripheral & coronary 

smooth muscle tone = decrease SVR

Potassium channels activators

minoxidil, cause vasodilation by activating potassium channels in vascular smooth muscle.

An increase in potassium conductance results in hyperpolarization of the cell membrane which is associated with relaxation of smooth muscle.

Nitrovasodilators, such as sodium nitroprusside,

Increase in intracellular cGMP. cGMP in turn activates a protein kinase. Directly-Acting Vasodilators are on occasion used alone but more frequently are used in combination with antihypertensive agents from other classes (esp. a β-blocker and a diuretic.)

Factors affecting onset and duration of action of local anesthetics

pH of tissue

pKa of drug

Time of diffusion from needle tip to nerve

Time of diffusion away from nerve

Nerve morphology

Concentration of drug

Lipid solubility of drug

Third Generation Cephalosporins 

Prototype drugs are CEFOTAXIME (IV) and CEFIXIME (oral). CEFTAZIDIME (for Pseudomonas aeruginosa.).

Further expansion of Gm negative spectrum to include hard to treat organisms such as Enterobacter, Serratia, and Pseudomonas. 
In addition to better Gm negative spectrum, this group has improved pharmacokinetic properties (longer half-lives) that allow once daily dosing with some agents. In general, activity toward Gm + bacteria is reduced. These are specialty antibiotics that should be reserved for specific uses. 

Enterobacteriaciae that are almost always sensitive (>95% sensitive)
E. coli
Proteus mirabilis (indole –)
Proteus vulgaris (indole +)
Klebsiella pneumoniae

Gram negative bacilli that are generally sensitive (>75% sensitive)
Morganella morganii
Providencia retgerri
Citrobacter freundii
Serratia marcescens
Pseudomonas aeruginosa (Ceftazidime only)


Gram negative bacilli that are sometimes sensitive (<75% sensitive)
Enterobacter
Stenotrophomonas (Xanthomonas) maltophilia (Cefoperazone & Ceftazidime only)
Acinetobacter

--> cefepime & cefpirome are promising for these bacteria

Bacteria that are resistant
Listeria monocytogenes
Pseudomonas cepacia
Enterococcus sp. 

Uses
1. Gram negative septicemia & other serious Gm – infections
2. Pseudomonas aeruginosa infections (Ceftazidime - 90% effective)
3. Gram negative meningitis - Cefotaxime, Ceftriaxone, Cefepime. For empiric therapy add vancomycin ± rifampin to cover resistant Strep. pneumoniae
4. Gonorrhea - Single shot of Ceftriaxone is drug of choice. Oral cefixime and ceftibuten are also OK.
5. Complicated urinary tract infections, pyelonephritis
6. Osteomyelitis - Ceftriaxone in home health care situations
7. Lyme disease - ceftriaxone in home health care situations

Classification

I) Esters

 1. Formed from an aromatic acid and an amino alcohol.

 2. Examples of ester type local anesthetics:

 Procaine

Chloroprocaine

Tetracaine

Cocaine

Benzocaine- topical applications only

2) Amides

 1. Formed from an aromatic amine and an amino acid.

 2. Examples of amide type local anesthetics:

Articaine

Mepivacaine

Bupivacaine

Prilocaine

Etidocaine

Ropivacaine

Lidocaine

NATURAL ANTICOAGULANTS:

       1. PGI-2.

       2. Antithrombin.

       3. Protein-C.

       4. TFPI.

       5. Heparin.

       6. Fibrinolytic system.

OXYMETAZOLINE
 

It is a directly acting sympathomimetic amine used in symptomatic relief in nasal congestion which increases mucosal secretion.

It is used:
- As a nasal decongestant in allergic rhinitis, with or without the addition of antazoline or sodium chromoglycate. 
- As an ocular decongestant in allergic conjunctivitis.

Compounds like naphazoline and xylometazoline are relatively selective α2 agonists, which on topical application produce local vasoconstriction.

Flucloxacillin, important even now for its resistance to beta-lactamases produced by bacteria such as Staphylococcus species. It is still no match for MRSA (Methicillin Resistant Staphylococcus aureus).

The last in the line of true penicillins were the antipseudomonal penicillins, such as ticarcillin, useful for their activity against Gram-negative bacteria

Explore by Exams