NEET MDS Lessons
Pharmacology
Aspirin
Mechanism of Action
ASA covalently and irreversibly modifies both COX-1 and COX-2 by acetylating serine-530 in the active site Acetylation results in a steric block, preventing arachidonic acid from binding
Uses of Aspirin
Dose-Dependent Effects:
Low: < 300mg blocks platelet aggregation
Intermediate: 300-2400mg/day antipyretic and analgesic effects
High: 2400-4000mg/day anti-inflammatory effects
Often used as an analgesic (against minor pains and aches), antipyretic (against fever), and anti-inflammatory. It has also an anticoagulant (blood thinning) effect and is used in long-term low-doses to prevent heart attacks
Low-dose long-term aspirin irreversibly blocks formation of thromboxane A2 in platelets, producing an inhibitory affect on platelet aggregation, and this blood thinning property makes it useful for reducing the incidence of heart attacks
Its primary undesirable side effects, especially in stronger doses, are gastrointestinal distress (including ulcers and stomach bleeding) and tinnitus. Another side effect, due to its anticoagulant properties, is increased bleeding in menstruating women.
Propofol -Intravenous Anesthetics
- A nonbarbiturate anesthetic
- It is very lipid-soluble, acts rapidly and has a short recovery time.
- It is associated with less nausea and vomiting than some of the other IV anesthetics.
- Propofol is very similar to thiopental in its effects on the cardiorespiratory system.
- It does not have any analgesic properties but lowers the dose of opioid needed when the two agents are used in combination.
- The most significant adverse cardiovascular effect associated with propofol administration is hypotension. It should be used with caution in patients with cardiac disease.
Tetracycline
Tetracycline is an antibiotic produced by the streptomyces bacterium
Mechanism and Resistance Tetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. This prevents the addition of amino acids to the elongating peptide chain, preventing synthesis of proteins. The binding is reversible in nature.
Example: Chlortetracycline, oxytetracycline, demethylchlortetracycline, rolitetracycline, limecycline, clomocycline, methacycline, doxycycline, minocycline
Source: Streptomyces spp.; some are also semi-synthetic
Spectrum of activity: Broad-spectrum. Exhibits activity against a wide range of Gram-positive, Gram-negative bacteria, atypical organisms such as chlamydiae, mycoplasmas, rickettsiae and protozoan parasites.
Effect on bacteria: Bacteriostatic
Cells become resistant to tetracyline by at least two mechanisms: efflux and ribosomal protection.
Contraindications Tetracycline use should be avoided during pregnancy and in the very young (less than 6 years) because it will result in permanent staining of teeth causing an unsightly cosmetic result.
Tetracyclines also become dangerous past their expiration dates. While most prescription drugs lose potency after their expiration dates, tetracyclines are known to become toxic over time; expired tetracyclines can cause serious damage to the kidneys.
Miscellaneous: Tetracyclines have also been used for non-antibacterial purposes, having shown properties such as anti-inflammatory activity, immunosuppresion, inhibition of lipase and collagenase activity, and wound healing.
Structure of the CNS
The CNS is a highly complex tissue that controls all of the body activities and serves as a processing center that links the body to the outside world.
It is an assembly of interrelated “parts”and “systems”that regulate their own and each other’s activity.
1-Brain
2-Spinal cord
The brain is formed of 3 main parts:
I. The forebrain
• cerebrum
• thalamus
• hypothalamus
II. The midbrain
III. The hindbrain
• cerebellum
• pons
• medulla oblongata
Different Parts of the Different Parts of the CNS & their functions CNS & their functions
The cerebrum(cerebral hemispheres):
It constitutes the largest division of the brain.
The outer layer of the cerebrum is known as the “cerebral cortex”.
The cerebral cortex is divided into different functional areas:
1.Motorareas(voluntary movements)
2.Sensoryareas(sensation)
3.Associationareas(higher mental activities as consciousness, memory, and behavior).
Deep in the cerebral hemispheres are located the “basal ganglia” which include the “corpus striatum”& “substantianigra”.
The basal gangliaplay an important role in the control of “motor”activities
The thalamus:
It functions as a sensory integrating center for well-being and malaise.
It receives the sensory impulses from all parts of the body and relays them to specific areas of the cerebral cortex.
The hypothalamus:
It serves as a control center for the entire autonomic nervous system.
It regulates blood pressure, body temperature, water balance, metabolism, and secretions of the anterior pituitary gland.
The mid-brain:
It serves as a “bridge”area which connects the cerebrum to the cerebellum and pons.
It is concerned with “motor coordination”.
The cerebellum:
It plays an important role in maintaining the appropriate bodyposture& equilibrium.
The pons:
It bridges the cerebellum to the medulla oblongata.
The “locus ceruleus”is one of the important areas of the pons.
The medulla oblongata:
It serves as an organ of conduction for the passage of impulses between the brain and spinal cord.
It contains important centers:
• cardioinhibitory
• vasomotor
• respiratory
• vomiting(chemoreceptor trigger zone, CTZ).
The spinal cord:
It is a cylindrical mass of nerve cells that extends from the end of the medulla oblongata to the lower lumbar vertebrae.
Impulses flow from and to the brain through descending and ascending tracts of the spinal cord.
Glitazones (thiazolidinediones)
Thiazolidinediones, also known as the "-glitazones"
pioglitazone
rosiglitazone
Mechanism
bind to nuclear receptors involved in transcription of genes mediating insulin sensitivity
peroxisome proliferator-activating receptors (PPARs)
↑ insulin sensitivity in peripheral tissue
↓ gluconeogenesis
↑ insulin receptor numbers
↓ triglycerides
Clinical use
type II DM
as monotherapy or in combination with other agents
contraindicated in CHF
associated with increased risk of MI (in particular rosiglitazone)
RENIN-ANGIOTENSIN SYSTEM INHIBITORS
The actions of Angiotensin II include an increase in blood pressure and a stimulation of the secretion of aldosterone (a hormone from the adrenal cortex) that promotes sodium retention. By preventing the formation of angiotensin II, blood pressure will be reduced. This is the strategy for development of inhibitors. Useful inhibitors of the renin-angiotensin system are the Angiotensin Converting Enzyme Inhibitors
First line treatment for: Hypertension , Congestive heart failure [CHF]
ACE-Inhibitor’s MOA (Angiotensin Converting Enzyme Inhibitors)
Renin-Angiotensin Aldosterone System:
. Renin & Angiotensin = vasoconstrictor
. constricts blood vessels & increases BP
. increases SVR or afterload
. ACE Inhibitors blocks these effects decreasing SVR & afterload
. Aldosterone = secreted from adrenal glands
. cause sodium & water reabsorption
. increase blood volume
. increase preload
. ACE I blocks this and decreases preload
Types
Class I: captopril
Class II (prodrug) : e.g., ramipril, enalapril, perindopril
Class III ( water soluble) : lisinopril.
Mechanism of Action
Inhibition of circulating and tissue angiotensin- converting enzyme.
Increased formation of bradykinin and vasodilatory prostaglandins.
Decreased secretion of aldosterone; help sodium excretion.
Advantages
- Reduction of cardiovascular morbidity and mortality in patients with atherosclerotic vascular disease, diabetes, and heart failure.
- Favorable metabolic profile.
- Improvement in glucose tolerance and insulin resistance.
- Renal glomerular protection effect especially in diabetes mellitus.
- Do not adversely affect quality of life.
Indications
- Diabetes mellitus, particularly with nephropathy.
- Congestive heart failure.
- Following myocardial infraction.
Side Effects
- Cough (10 - 30%): a dry irritant cough with tickling sensation in the throat.
- Skin rash (6%).
- Postural hypotension in salt depleted or blood volume depleted patients.
- Angioedema (0.2%) : life threatening.
- Renal failure: rare, high risk with bilateral renal artery stenosis.
- Hyperkalaemia
- Teratogenicity.
Considerations
- Contraindications include bilateral renal artery stenosis, pregnancy, known allergy, and hyperkalaemia.
- High serum creatinine (> 3 mg/dl) is an indication for careful monitoring of renal function, and potassium. Benefits can still be obtained in spite of renal insufficiency.
- A slight stable increase in serum creatinine after the introduction of ACE inhibitors does not limit use.
- ACE-I are more effective when combined with diuretics and moderate salt restriction.
ACE inhibitors drugs
Captopril 50-150 mg
Enalapril 2.5-40 mg
Lisinopril 10-40 mg
Ramipril 2.5-20 mg
Perindopril 2-8 mg
Angiotensin Receptor Blocker
Losartan 25-100 mg
Candesartan 4-32 mg
Telmisartan 20-80 mg
Mechanism of action
They act by blocking type I angiotensin II receptors generally, producing more blockade of the renin -angiotensin - aldosterone axis.
Advantages
• Similar metabolic profile to that of ACE-I.
• Renal protection.
• They do not produce cough.
Indications
Patients with a compelling indication for ACE-I and who can not tolerate them because of cough or allergic reactions.
Carbamazepine (Tegretol): most common; for generalized tonic-clonic and all partial seizures; especially active in temporal lobe epilepsies
Mechanism: ↓ reactivation of Na channels (↑ refractory period, blocks high frequency cell firing, ↓ seizure spread)
Side effects: induces hepatic microsomal enzymes (can enhance metabolism of other drugs)