Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Sedative-Hypnotic Drugs

Sedative drug is the drug that reduce anxiety (anxiolytic) and produce sedation and referred to as minor tranquillisers. 

Hypnotic drug is the drug that induce sleep


Effects: make you sleepy; general CNS depressants

Uses: sedative-hypnotic (insomnia ), anxiolytic (anxiety, panic, obsessive compulsive, phobias), muscle relaxant (spasticity, dystonias), anticonvulsant (absence, status epilepticus, generalized seizures—rapid tolerance develops), others (pre-operative medication and endoscopic procedures,  withdrawal from chronic use of ethanol or other CNS depressants)

1- For panic disorder alprazolam is effective.

2- muscle disorder: (reduction of muscle tone and coordination) diazepam is useful in treatment of skeletal muscle spasm e.g. muscle strain and spasticity of degenerative muscle diseases.

3-epilepsy: by increasing seizure threshold.

Clonazepam is useful in chronic treatment of epilepsy while diazepam is drug of choice in status epilepticus.

4-sleep disorder: Three BDZs are effective hypnotic agents; long acting flurazepam, intermediate acting temazepam and short
acting triazolam. They decrease the time taken to get to sleep They increase the total duration of sleep

5-control of alcohol withdrawals symptoms include diazepam, chlordiazepoxide, clorazepate and oxazepam.

6-in anesthesia: as preanesthetic amnesic agent (also in cardioversion) and as a component of balanced anesthesia

Flurazepam significantly reduce both sleep induction time and numbers of awakenings and increase duration of sleep and little rebound insomnia. It may cause daytime sedation.

Temazepam useful in patients who experience frequent awakening, peak sedative effect occur 2-3 hr. after an oral dose.

Triazolam used to induce sleep in recurring insomnia and in individuals have difficulty in going to sleep, tolerance develop within few days and withdrawals result in rebound insomnia therefore the drug used intermittently.


Drugs and their actions

1. Benzodiazepines: enhance the effect of gamma aminobutyric acid (GABA) at GABA receptors on chloride channels. This increases chloride channel conductance in the brain (GABA A A receptors are ion channel receptors).

2. Barbiturates: enhance the effect of GABA on the chloride channel but also increase chloride channel conductance independently of GABA, especially at high doses 

3. Zolpidem and zaleplon: work in a similar manner to benzodiazepines but do so only at the benzodiazepine (BZ1) receptor type. (Both BZ1and BZ2 are located on chloride channels.)

4. Chloral hydrate: probably similar action to barbiturates.

5. Buspirone: partial agonist at a specific serotonin receptor (5-HT1A).

6. Other sedatives (e.g., mephenesin, meprobamate, methocarbamol, carisoprodol, cyclobenzaprine): 
mechanisms not well-described. Several mechanisms may be involved.

7. Baclofen: stimulates GABA linked to the G protein, Gi , resulting in an increase in K + conductance and a decrease in Ca2+ conductance. (Other drugs mentioned above do not bind to the GABA B receptor.) 

8. Antihistamines (e.g., diphenhydramine): block H1 histamine receptors. Doing so in the CNS leads to sedation.

9. Ethyl alcohol: its several actions include a likely effect on the chloride channel.

EPHEDRINE

It act indirectly and directly on α and β receptors. It increases blood pressure both by peripheral vasoconstriction and by increasing the cardiac output. Ephedrine also relaxes the bronchial smooth muscles.

Ephedrine stimulates CNS and produces restlessness, insomnia, anxiety and tremors.
Ephedrine produces mydriasis on local as well as systemic administration.
Ephedrine is useful for the treatment of chronic and moderate type of bronchial asthma, used as nasal decongestant and as a mydriatic without cycloplegia. It is also useful in preventing ventricular asystole in Stokes Adams syndrome.

Characteristics of Opioid Receptors

mu1

Agonists : morphine phenylpiperidines

Actions:  analgesia bradycardia sedation

mu2

Agonists : morphine phenylpiperidines

Actions:  respiratory depression euphoria physical dependence  

delta

Actions:  analgesia-weak,  respiratory depression

kappa

Agonists: ketocyclazocine dynorphin nalbuphine butorphanol

Actions:  analgesia-weak respiratory depression sedation

Sigma

Agonists: pentazocine

Action: dysphoria -delerium hallucinations tachycardia hypertension

epsilon:

Agonists: endorphin

Actions: stress response acupuncture

Selective serotonin reuptake inhibitors (SSRIs)

e.g. fluoxetine, paroxetine, citalopram, and sertraline
- Most commonly used antidepressant category
- Less likely to cause anticholinergic side effects
- Relatively safest antidepressant group in overdose
- Selectively inhibits reuptake of serotonin(5-HT)

Mode of Action;
- Well absorbed when given orally
- Plasma half-lives of 18-24 h allowing once daily dosagedaily dosage
- Metabolised through CYP450 system and most SSRIs inhibit some CYP isoforms
- Therapeutic effect is delayed for 2-4 weeks

ADVERSE DRUG REACTIONS

- Insomnia, increased anxiety, irritability
- Decreased libido
- Erectile dysfunction, anorgasmia, and ejaculatory delay
- Bleeding disorders
- Withdrawal syndrome

Celecoxib

is a highly selective COX-2 inhibitor and primarily inhibits this isoform of cyclooxygenase, whereas traditional NSAIDs inhibit both COX-1 and COX-2. Celecoxib is approximately 10-20 times more selective for COX-2 inhibition over COX-1.

Being a sulphonamide can cause skin rash &  hypersensitivity rxn., occasional oedema& HT.

Indication

Osteoarthritis ( 100‐200mg BID ) , rheumatoid  arthritis, dysmenorrhea, acute gouty attacks,  acute musculoskeletal pain. 

Diclofenac

Short half life (1‐2 hrs), high 1stpass metab.,  accumulates in synovial fluid after oral admn., reduce inflammation, such as in arthritis or acute injury

Mechanism of action

inhibition of prostaglandin synthesis by inhibition of cyclooxygenase (COX). There is some evidence that diclofenac inhibits the lipooxygenase pathways, thus reducing formation of the

leukotrienes (also pro-inflammatory autacoids). There is also speculation that diclofenac may inhibit phospholipase A2 as part of its mechanism of action. These additional actions may explain the high potency of diclofenac - it is the most potent NSAID on a molar basis.

Inhibition of COX also decreases prostaglandins in the epithelium of the stomach, making it more sensitive to corrosion by gastric acid. This is also the main side effect of diclofenac and other drugs that are not selective for the COX2-isoenzyme.

Phenobarbital (Luminal): for generalized tonic-clonic and partial seizures (not used for absence seizures)


Mechanism: enhances GABA inhibition (↑ open time of Cl channels in presence of GABA)


Side effects: sedation, ataxia, cognitive impairment, induction of hepatic microsomal enzymes

Explore by Exams