Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Fifth Generation:

These are extended spectrum antibiotics.

Ceftaroline, Ceftobiprole

Class I Sodium Channel Blockers 

• Block movement of sodium into cells of the cardiac conducting system
• Results in a stabilizing effect and decreased formation and conduction of electrical impulses 
• Have a local anesthetic effect
• Are declining in use due to proarrhythmic effects and increased mortality rates 

• Na channel blockers - Class 1 drugs are divided into 3 subgroups 
• 1A. 1B, 1C based on subtle differences in their mechanism of action. 
• Blockade of these channels will prevent depolarization. 
• Spread of action potential across myocardium will slow and areas of  pacemaker activity is suppressed.

Class IA Sodium Channel Blockers 

• Treatment of: symptomatic premature ventricular contractions, supraventricular tachycardia, and ventricular tachycardia, prevention of ventricular fibrillation
– Quinidine (Cardioquin, Quinaglute) 
– Procainamide (Pronestyl, Procanbid) 
– Disopyramide (Norpace) 

• Quinidine – prototype 
• Low therapeutic index
• High incidence of adverse effects 

Class IB Sodium Channel Blockers 

• Treatment of: symptomatic premature ventricular contractions and ventricular tachycardia, prevention of ventricular  fibrillation
– Lidocaine (Xylocaine) 
– Mexiletine (Mexitil) 
– Tocainide (Tonocard) 
– Phenytoin (Dilantin) 

Side Effects: Lidocaine 
• Drowsiness • Paresthesias  • Muscle twitching • Convulsions  • Changes in mental status (disorientation, confusion) • Hypersensitivity reactions (edema, uticaria, anaphylaxis) 

Side Effects: Phenytoin (Dilantin)
• Gingival hyperplasia 
• Nystagmus 
• Ataxia, slurring of speech 
• Tremors 
• Drowsiness 
• Confusion 

• Lidocaine – prototype 
• Must be given by injection 
• Used as a local anesthetic 
• Drug of choice for treating serious ventricular arrhythmias associated with acute myocardial infarction, cardiac surgery, cardiac catheterization and electrical conversion 

Class IC Sodium Channel Blockers
• Treatment of: life-threatening ventricular tachycardia or fibrillation and supraventricular tachycardia unresponsive to other  drugs 

– Flecainide 
– Propafenone 

Adverse Effects 
• CNS - dizziness, drowsiness, fatigue, twitching, mouth numbness, slurred speech vision changes, and tremors that can progress to convulsions.
• GI - changes in taste, nausea, and vomiting. CV - arrhythmias including heart blocks, hypotension, vasodilation, and potential for cardiac arrest. 
• Other Rash, hypersensitivity reactions loss of hair and potential bone marrow depression. 

Drug-Drug Interactions
• Increased risk for arrhythmias if combined with other drugs that are know to cause arrhythmias- digoxin and beta blockers 
• Increased risk of bleeding if combined with oral anticoagulants. 

Drug Food Interactions
• Quinidine needs an acidic urine for excretion. Increased levels lead to toxicity 
• Avoid foods that alkalinize the urine- citrus juices, vegetables, antacid, milk products

Megltinides

nateglinide
repaglinide

Mechanism

binds to K+ channels on β-cells → postprandial insulin release


Clinical use
type 2 diabetes mellitus
may be used as monotherapy, or in combination with metformin

Pharmacokinetics

Pharmacokinetics is the way that the body deals with a drug - how that drug moves throughout the body, and how the body metabolizes and excretes it.  The factors and processes involved in pharmacokinetics must be considered when choosing the most effective dose, route and schedule for a drug's use.

The four processes involved in pharmacokinetics are:

Absorption:  The movement of a drug from its site of administration into the blood.

Several factors influence a drug's absorption:

  • Rate of Dissolution:  the faster a drug dissolves the faster it can be absorbed, and the faster the effects will begin.
  • Surface Area:  Larger surface area = faster absorption.
  • Blood Flow:  Greater blood flow at the site of drug administration = faster absorption.
  • Lipid Solubility:  High lipid solubility = faster absorption
  • pH Partitioning:  A drug that will ionize in the blood and not at the site of administration will absorb more quickly.

Distribution:  The movement of drugs throughout the body.

Metabolism:  (Biotransformation) The enzymatic alteration of drug structure.

Excretion:  The removal of drugs from the body.

As a drug moves through the body, it must cross membranes.  Some important factors to consider here then are:

Body's cells are surrounded by a bilayer of phospholipids (cell membrane).

There are three ways that a substance can cross cell membranes:

  • Passing through channels and pores: only very small molecules can cross cell membranes this way.
  • Transport Systems:   Selective carriers that may or may not use ATP.
  • Direct Penetration of the Cell Membrane: 

Organic Nitrates 
Relax smooth muscle in blood vessel
Produces vasodilatation
– Decreases venous pressure and venous return to the heart  Which decreases the cardiac work load and oxygen demand. 
– May have little effect on the coronary arteries CAD causes stiffening and lack of 
–    responsiveness in the coronary arteries 
– Dilate arterioles, lowering peripheral vascular resistance  Reducing the cardiac workload

Main effect related to drop in blood pressure by
– Vasodilation- pools blood in veins and capillaries, decreasing the volume of blood that the heart has to pump around (the preload)
– relaxation of the vessels which decreases the resistance the heart has to pump against (the afterload) 

Indications
- Myocardial ischemia 
– Prevention
– Treatment 

Nitroglycerin (Nitro-Bid)
• Used
– To relive acute angina pectoris 
– Prevent exercise induced angina 
– Decrease frequency and severity of acute anginal episodes

Type 
• Oral - rapidly metabolized in the liver only small amount reaches circulation 
• Sublingual – Transmucosal tablets and sprays 
• Transdermal  – Ointment s 
– Adhesive discs applied to the skin
• IV preparations 

Sublingual Nitroglycerine 
•  Absorbed directly into the systemic circulation,  Acts within 1-3 minutes , Lasts 30-60 min 

Topical Nitroglycerine 
• Absorbed directly into systemic circulation,   Absorption at a slower rate. ,  Longer duration of action 
Ointment - effective for 4-8 hours 
Transdermal disc - effective for 18-24 hours 

Isosorbide dinitrate 
• Reduces frequency and severity of acute anginal episodes
• Sublingual or chewable acts in 2 min. effects last 2-3 hours
• Orally, systemic effects in about 30 minutes and last about 4 hours after oral administration
    
Tolerance to Long-Acting Nitrates 
• Long-acting dosage forms of nitrates may develop tolerance
– Result in episodes of chest pain
– Short acting nitrates less effective 

Prevention of Tolerance 
• Use long-acting forms for approximately 12-16 hours daily during active periods and omit them during inactive periods or sleep 
• Oral or topical should be given every 6 hours X 3 doses allowing a rest period of 6 hours

Isosorbide dinitrate (Isordil, Sorbitrate) is used to reduce the frequency and severity of acute anginal episodes.
When given sublingually or in chewable tablets, it acts in about 2 minutes, and its effects last 2 to 3 hours. When higher doses are given orally, more drug escapes metabolism in the liver and produces systemic effects in approximately 30 minutes. Therapeutic effects last about 4 hours after oral administration

Isosorbide mononitrate (Ismo, Imdur) is the metabolite and active component of isosorbide dinitrate. It is well absorbed after oral administration and almost 100% bioavailable. Unlike other oral nitrates, this drug is not subject to first-pass hepatic metabolism. Onset of action occurs within 1 hour, peak effects occur between 1 and 4 hours, and the elimination half-life is approximately 5 hours. It is used only for prophylaxis of angina; it does not act rapidly enough to relieve acute attacks.

Mixed Narcotic Agonists/Antagonists

These drugs all produce analgesia, but have a lower potential for abuse and do not produce as much respiratory depression.

A. Pentazocine

  • Has a combination of opiate analgesic and antagonist activity.
  • Orally, it has about the same analgesic potency as codeine.
  • In contrast to morphine, cardiac workload tends to increase due to an increase in pulmonary arterial and cerebrovascular pressure. Blood pressure and heart rate both also tend to increase.
  • Adverse reactions to Pentazocine

• Nausea, vomiting, dizziness.

• Psychotomimetic effects, such as dysphoria, nightmares and visual hallucinations.

• Constipation is less marked than with morphine.

B. Nalbuphine

  • Has both analgesic and antagonist properties.
  • Resembles pentazocine pharmacologically.
  • Analgesic potency approximately the same as morphine.
  • Appears to be less hypotensive than morphine.
  • Respiratory depression similar to morphine, but appears to peak-out at higher doses and to reach a ceiling.
  • Like morphine, nalbuphine reduces myocardial oxygen demand. May be of value following acute myocardial infarction due to both its analgesic properties and reduced myocardial oxygen demand.
  • Most frequent side effect is sedation.

C. Butorphanol

  • Has both opiate agonist and antagonist properties.Resembles pentazocine , pharmacologically., 3.5 to 7 times more potent than morphine., Produces respiratory depression, but this effect peaks out with higher doses. The respiratory depression that does occur lasts longer than that seen following morphine administration.
  • Butorphanol, like pentazocine, increases pulmonary arterial pressure and possibly the workload on the heart.
  • Adverse reactions include sedation, nausea and sweating.

D. Buprenorphine

  • A derivative of eto`rphine. Has both agonist and antagonist activity. 20 to 30 times more potent than morphine.Duration of action only slightly longer than morphine, but respiratory depression and miosis persist well after analgesia has disappeared.
  • Respiratory depression reaches a ceiling at relatively low doses.
  • Approximately 96% of the circulating drug is bound to plasma proteins.
  • Side effects are similar to other opiates:
    • sedation, nausea, vomiting,
    • dizziness, sweating and headache.

Nystatin

Candida spp. are sensitive to nystatin.

Uses: Cutaneous, vaginal,  mucosal and  esophageal  infections.

Candida infections can be treated with nystatin.

Cryptococcus is also sensitive to nystatin.

Nystatin is often used as prophylaxis in patients who are at risk for fungal infections, such as AIDS patients with a low CD4+ count and patients receiving chemotherapy.

MOA

nystatin binds to ergosterol, the main component of the fungal cell membrane. When present in sufficient concentrations, it forms a pore in the membrane that leads to K+ leakage and death of the fungus.

Explore by Exams