NEET MDS Lessons
Pharmacology
Drugs Used in Diabetes
Goals of diabetes treatment
lower serum glucose to physiologic range
keep insulin levels in physiologic range
eliminate insulin resistance
best initial step in management: weight loss, contractile-based exercise weight loss is more important for insulin sensitivity than is a low-carb diet
Modalities of diabetes treatment
Type I DM
insulin
low-sugar diet
Type II DM
exercise
diet
insulin
6 classes of drugs
Insulin
Sulfonylureas - Glyburide
Meglitinides - Nateglinide
Biguanides Metformin
Glitazones (thiazolidinediones) Pioglitazone
α-glucosidase inhibitors Acarbose
GLP-1 mimetics (incretin mimetics) Exenatide
Amylin analog Pramlintide
Ketoprofen
It acts by inhibiting the body's production of prostaglandin.
Oxyphenbutazone: one of the metabolites of phenylbutazone. Apazone. Similar to phenylbutazone, but less likely to cause agranulocytosis
Characteristics of Opioid Receptors
mu1
Agonists : morphine phenylpiperidines
Actions: analgesia bradycardia sedation
mu2
Agonists : morphine phenylpiperidines
Actions: respiratory depression euphoria physical dependence
delta
Actions: analgesia-weak, respiratory depression
kappa
Agonists: ketocyclazocine dynorphin nalbuphine butorphanol
Actions: analgesia-weak respiratory depression sedation
Sigma
Agonists: pentazocine
Action: dysphoria -delerium hallucinations tachycardia hypertension
epsilon:
Agonists: endorphin
Actions: stress response acupuncture
α-glucosidase inhibitors
acarbose
miglitol
Mechanism
inhibit α-glucosidases in intestinal brush border
delayed sugar hydrolysis
delayed glucose absorption
↓ postprandial hyperglycemia
↓ insulin demand
Clinical use
type II DM
as monotherapy or in combination with other agents
Amoxicillin
a moderate-spectrum
β-lactam antibiotic used to treat bacterial infections caused by susceptible
Mode of action Amoxicillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. microorganisms. It is usually the drug of choice within the class because it is better absorbed, following oral administration, than other beta-lactam antibiotics. Amoxicillin is susceptible to degradation by β-lactamase-producing bacteria, and so is often given clavulanic acid.
Microbiology Amoxicillin is a moderate-spectrum antibiotic active against a wide range of Gram-positive, and a limited range of Gram-negative organisms
Susceptible Gram-positive organisms : Streptococcus spp., Diplococcus pneumoniae, non β-lactamase-producing Staphylococcus spp., and Streptococcus faecalis.
Susceptible Gram-negative organisms Haemophilus influenzae, Neisseria gonorrhoeae, Neisseria meningitidis, Escherichia coli, Proteus mirabilis and Salmonella spp.
Resistant organisms Penicillinase producing organisms, particularly penicillinase producing Staphylococcus spp. Penicillinase-producing N. gonorrhoeae and H. influenzae are also resistant
All strains of Pseudomonas spp., Klebsiella spp., Enterobacter spp., indole-positive
Proteus spp., Serratia marcescens, and Citrobacter spp. are resistant.
The incidence of β-lactamase-producing resistant organisms, including E. coli, appears to be increasing.
Amoxicillin and Clavulanic acid Amoxicillin is sometimes combined with clavulanic acid, a β-lactamase inhibitor, to increase the spectrum of action against
Gram-negative organisms, and to overcome bacterial antibiotic resistance mediated through β-lactamase production.
Organic Nitrates
Relax smooth muscle in blood vessel
Produces vasodilatation
– Decreases venous pressure and venous return to the heart Which decreases the cardiac work load and oxygen demand.
– May have little effect on the coronary arteries CAD causes stiffening and lack of
– responsiveness in the coronary arteries
– Dilate arterioles, lowering peripheral vascular resistance Reducing the cardiac workload
Main effect related to drop in blood pressure by
– Vasodilation- pools blood in veins and capillaries, decreasing the volume of blood that the heart has to pump around (the preload)
– relaxation of the vessels which decreases the resistance the heart has to pump against (the afterload)
Indications
- Myocardial ischemia
– Prevention
– Treatment
Nitroglycerin (Nitro-Bid)
• Used
– To relive acute angina pectoris
– Prevent exercise induced angina
– Decrease frequency and severity of acute anginal episodes
Type
• Oral - rapidly metabolized in the liver only small amount reaches circulation
• Sublingual – Transmucosal tablets and sprays
• Transdermal – Ointment s
– Adhesive discs applied to the skin
• IV preparations
Sublingual Nitroglycerine
• Absorbed directly into the systemic circulation, Acts within 1-3 minutes , Lasts 30-60 min
Topical Nitroglycerine
• Absorbed directly into systemic circulation, Absorption at a slower rate. , Longer duration of action
Ointment - effective for 4-8 hours
Transdermal disc - effective for 18-24 hours
Isosorbide dinitrate
• Reduces frequency and severity of acute anginal episodes
• Sublingual or chewable acts in 2 min. effects last 2-3 hours
• Orally, systemic effects in about 30 minutes and last about 4 hours after oral administration
Tolerance to Long-Acting Nitrates
• Long-acting dosage forms of nitrates may develop tolerance
– Result in episodes of chest pain
– Short acting nitrates less effective
Prevention of Tolerance
• Use long-acting forms for approximately 12-16 hours daily during active periods and omit them during inactive periods or sleep
• Oral or topical should be given every 6 hours X 3 doses allowing a rest period of 6 hours
Isosorbide dinitrate (Isordil, Sorbitrate) is used to reduce the frequency and severity of acute anginal episodes.
When given sublingually or in chewable tablets, it acts in about 2 minutes, and its effects last 2 to 3 hours. When higher doses are given orally, more drug escapes metabolism in the liver and produces systemic effects in approximately 30 minutes. Therapeutic effects last about 4 hours after oral administration
Isosorbide mononitrate (Ismo, Imdur) is the metabolite and active component of isosorbide dinitrate. It is well absorbed after oral administration and almost 100% bioavailable. Unlike other oral nitrates, this drug is not subject to first-pass hepatic metabolism. Onset of action occurs within 1 hour, peak effects occur between 1 and 4 hours, and the elimination half-life is approximately 5 hours. It is used only for prophylaxis of angina; it does not act rapidly enough to relieve acute attacks.