NEET MDS Lessons
Pharmacology
Hypothalamic - Pituitary Drugs
Somatropin
Growth hormone (GH) mimetic
Mechanism
agonist at GH receptors
increases production of insulin growth factor-1 (IGF-1)
Clinical use
GH deficiency
increase adult height for children with conditions associated with short stature
Turner syndrome
wasting in HIV infection
short bowel syndrome
Toxicity
scoliosis
edema
gynecomastia
increased CYP450 activity
Octreotide
Somatostatin mimetic
Mechanism
agonist at somatostatin receptors
Clinical use
acromegaly
carcinoid
gastrinoma
glucagonoma
acute esophageal variceal bleed
Toxicity
GI upset
gallstones
bradycardia
Oxytocin
Mechanism
agonist at oxytocin receptor
Clinical use
stimulation of labor
uterine contractions
control of uterine hemorrhage after delivery
stimulate milk letdown
Toxicity
fetal distress
abruptio placentae
uterine rupture
Desmopressin
ADH (vasopressin) mimetic
Mechanism
agonist at vasopressin V2 receptors
Clinical use
central (pituitary) diabetes insipidus
hemophilia A (factor VIII deficiency)
increases availability of factor VIII
von Willebrand disease
increases release of von Willebrand factor from endothelial cells
Toxicity
GI upset
headache
hyponatremia
allergic reaction
Second Generation Cephalosporins
Prototype drug is CEFUROXIME (IV) and CEFUROXIME AXETIL (oral). CEFOXITIN has good activity vs. anaerobes.
1. Expanded activity against gram negative bacilli. Still have excellent activity against gram positive (Staph. and Strep.) bacteria.
Activity for Gram negative bacteria
Neisseria sp. (some gonococci resistant)
H. influenzae (including some ampicillin-resistant strains)
Moraxella catarrhalis (some resistance esp. to cefaclor)
E. coli
Proteus mirabilis
Indole + Proteus (some strains resistant)
Morganella morganii (some strains resistant)
Klebsiella pneumoniae
Serratia sp. (many strains resistant)
2. Anaerobic infections - CEFOXITIN & CEFOTETAN only
Moderate activity against Bacteroides fragilis group.
Good activity for other Bacteroides sp., Peptostreptococcus, Fusobacterium, Clostridium sp
Uses
1. Community-acquired pneumonia - Cefuroxime is widely used for empiric therapy. Has activity vs. many ampicillin-resistant H. influenzae strains.
2. Skin and soft tissue infection
3. Urinary tract infections
4. Upper respiratory tract infections (otitis media, sinusitis). Some resistance to H.influenzae to cefaclor (20-30%).
5. Mixed aerobic & anaerobic infections - Cefoxitin & Cefotetan. Resistance to B.fragilis is increasing.
6. Surgical prophylaxis - Cefoxitin or cefotetan are widely used in cases where mixed aerobic & anaerobic infections may occur, esp. intra-abdominal, colorectal, and gynecologic operations. For cardiovascular and orthopedic procedures, cefuroxime and others may be used, but cefazolin is cheaper and appears to work well.
Neuron Basic Structure (How brain cells communicate)
• Synapse:A junction between the terminal button of an axon and the membrane of another neuron
• Terminal button(orbouton):The bud at the end of a branch of an axon; forms synapses with another neuron; sends information to that neuron.
• Neurotransmitter:A chemical that is released by a terminal button; has an excitatory or inhibitory effect on another neuron.
Different types of Synapses
1-Axo-denrdritic
2-Axo-axonal
3-Axo-somatic
Chemical transmission in the CNS
The CNS controls the main functions of the body through the action endogenous chemical substances known as “neurotransmitters”.
These neurotransmitters are stored in and secreted by neurons to “transmit”information to the postsynaptic sites producing either excitatoryor inhibitory responses.
Most centrally acting drugs exert their actions at the synaptic junctions by either affecting neurotransmitter synthesis, release, uptake, or by exerting direct agonistor antagonistaction on postsynaptic sites.
Codeine
Codeine is methyl morphine, with a methyl substitution on the phenolic hydroxyl group of morphine. It is more lipophilic than morphine and thus crosses the blood–brain barrier faster.
- classified as a simple, or mild analgesic, codeine is often used in low doses as an oral analgesic has a much better oral/parenteral absorption ratio than morphine.
- Effective for mild to moderate pain.
- Constipation occurs
- Dizziness may occur in ambulatory patients.
- More potent histamine-releasing action than does morphine.
- Should not be administered by IV injection.
- Extremely effective antitussive agent and is used therapeutically for suppressing cough.
- In contrast to morphine, codeine overdose can occasionally lead to the production of seizures.
- Seizures can be treated with barbiturates.
- Respiratory depression can be counteracted with Naloxone.
- orally, 30 mg of codeine is equi-analgesic to 600 mg of aspirin, however, the effects of the two are additive, and occasionally synergistic
Cough is a protective reflex which helps in expulsion of respiratory secretion or foreign particles which are irritant to respiratory
tract. Irritation to any part of respiratory tract starting from pharynx to lungs carried impulses by afferent fibres in vagus and
sympathetic nerve to the cough centre in the medulla oblongata. \
Cough may be dry (without sputum or unproductive) or productive (with sputum production).
Classification for drugs used in cough.
I. Pharyngeal demulcents
Certain lozenges, linctus and cough drops containing glycerine, liquorice and syrups.
II. Expectorants
Sodium and potassium citrate
Sodium and potassium acetate
Potassium iodide
Ammonium chloride & carbonate
Acetylcysteine
Bromhexine
Guaiphenesin
III. Antitussive
i. Opioids
Codeine (as linctus) Pholcodeine
ii. Non-opioids
Noscapine
Dextromethorphan
Pipazethate
iii. Antihistaminics
Chlorpheniramine
Diphenhydramine
Promethazine
Erdosteine is recently introduced mucolytic with unique protective functions for the respiratory tract. It is indicated in the treatment of acute and chronic airway diseases such as bronchitis, rhinitis, sinusitis, laryngopharyngitis and exacerbations of chronic bronchitis.
Oxytetracycline
Treats Oxytetracycline is a medicine used for treating a wide range of infections including infections of the lungs, urinary system, skin and eyes. It may also be used to treat sexually transmitted infections, infections caused by lice, rickettsial infections, cholera and plague. It is very occasionally used to treat leptospirosis, gas gangrene, and tetanus.
Characteristics of Opioid Receptors
mu1
Agonists : morphine phenylpiperidines
Actions: analgesia bradycardia sedation
mu2
Agonists : morphine phenylpiperidines
Actions: respiratory depression euphoria physical dependence
delta
Actions: analgesia-weak, respiratory depression
kappa
Agonists: ketocyclazocine dynorphin nalbuphine butorphanol
Actions: analgesia-weak respiratory depression sedation
Sigma
Agonists: pentazocine
Action: dysphoria -delerium hallucinations tachycardia hypertension
epsilon:
Agonists: endorphin
Actions: stress response acupuncture