NEET MDS Lessons
Pharmacology
Gentamicin
Gentamicin is a aminoglycoside antibiotic, and can treat many different types of bacterial infections, particularly Gram-negative infection.
Gentamicin works by binding to a site on the bacterial ribosome, causing the genetic code to be misread.
Like all aminoglycosides, gentamicin does not pass the gastro-intestinal tract, so it can only be given intravenously or intramuscularly.
Gentamicin can cause deafness or a loss of equilibrioception in genetically susceptible individuals. These individuals have a normally harmless mutation in their DNA, that allows the gentamicin to affect their cells. The cells of the ear are particularly sensitive to this.
Gentamicin can also be highly nephrotoxic, particularly if multiple doses accumulate over a course of treatment. For this reason gentamicin is usually dosed by body weight. Various formulae exist for calculating gentamicin dosage. Also serum levels of gentamicin are monitored during treatment.
E. Coli has shown some resistance to Gentamicin, despite being gram-negative
Organic Nitrates
Relax smooth muscle in blood vessel
Produces vasodilatation
– Decreases venous pressure and venous return to the heart Which decreases the cardiac work load and oxygen demand.
– May have little effect on the coronary arteries CAD causes stiffening and lack of
– responsiveness in the coronary arteries
– Dilate arterioles, lowering peripheral vascular resistance Reducing the cardiac workload
Main effect related to drop in blood pressure by
– Vasodilation- pools blood in veins and capillaries, decreasing the volume of blood that the heart has to pump around (the preload)
– relaxation of the vessels which decreases the resistance the heart has to pump against (the afterload)
Indications
- Myocardial ischemia
– Prevention
– Treatment
Nitroglycerin (Nitro-Bid)
• Used
– To relive acute angina pectoris
– Prevent exercise induced angina
– Decrease frequency and severity of acute anginal episodes
Type
• Oral - rapidly metabolized in the liver only small amount reaches circulation
• Sublingual – Transmucosal tablets and sprays
• Transdermal – Ointment s
– Adhesive discs applied to the skin
• IV preparations
Sublingual Nitroglycerine
• Absorbed directly into the systemic circulation, Acts within 1-3 minutes , Lasts 30-60 min
Topical Nitroglycerine
• Absorbed directly into systemic circulation, Absorption at a slower rate. , Longer duration of action
Ointment - effective for 4-8 hours
Transdermal disc - effective for 18-24 hours
Isosorbide dinitrate
• Reduces frequency and severity of acute anginal episodes
• Sublingual or chewable acts in 2 min. effects last 2-3 hours
• Orally, systemic effects in about 30 minutes and last about 4 hours after oral administration
Tolerance to Long-Acting Nitrates
• Long-acting dosage forms of nitrates may develop tolerance
– Result in episodes of chest pain
– Short acting nitrates less effective
Prevention of Tolerance
• Use long-acting forms for approximately 12-16 hours daily during active periods and omit them during inactive periods or sleep
• Oral or topical should be given every 6 hours X 3 doses allowing a rest period of 6 hours
Isosorbide dinitrate (Isordil, Sorbitrate) is used to reduce the frequency and severity of acute anginal episodes.
When given sublingually or in chewable tablets, it acts in about 2 minutes, and its effects last 2 to 3 hours. When higher doses are given orally, more drug escapes metabolism in the liver and produces systemic effects in approximately 30 minutes. Therapeutic effects last about 4 hours after oral administration
Isosorbide mononitrate (Ismo, Imdur) is the metabolite and active component of isosorbide dinitrate. It is well absorbed after oral administration and almost 100% bioavailable. Unlike other oral nitrates, this drug is not subject to first-pass hepatic metabolism. Onset of action occurs within 1 hour, peak effects occur between 1 and 4 hours, and the elimination half-life is approximately 5 hours. It is used only for prophylaxis of angina; it does not act rapidly enough to relieve acute attacks.
Mefenamic acid
Analgesic, anti‐inflammatory properties less effective than aspirin
Short half‐lives, should not be used for longer than one week and never in pregnancy and in children.
Enhances oral anticoagulants
Used to treat pain, including menstrual pain. It decreases inflammation (swelling) and uterine contractions.
Metabolism
Hepatic Drug-Metabolizing Enzymes: most drug metabolism in the liverperformed by the hepatic microsomal enzyme system.
Therapeutic Consequences of Drug Metabolism
- Accelerated Renal Drug Excretion: The most important consequence of drug metabolism is the promotion of renal drug excretion. Metabolism makes it possible for the kidney to excrete many drugs that it otherwise could not.
- Drug Inactivation
- Increased Therapeutic Action: Metabolism may increase the effectiveness of some drugs.
- Activation of Prodrugs: A prodrug is a compound that is inactive when administered and made active by conversion in the body.
- Increased or Decreased Toxicity
Factors that influence rate of metabolism:
- Age: Hepatic maturation doesn't occur until about a year old.
- Induction of Drug-Metabolizing Enzymes: Some drugs can cause the rate of metabolism to increase, leading to the need for an increased dosage. May also influence the rate of metabolism for other drugs taken at the same time, leading to a need for increased dosages of those drugs as well.
- First-Pass Effect: Hepatic inactivation of certain oral drugs. Avoided by parentaral administration of drugs that undergo rapid hepatic metabolism.
- Nutritional Status
- Competition between Drugs
DIURETICS
The basis for the use of diuretics is to promote sodium depletion (and thereby water) which leads to a decrease in extracellular fluid volume.
An important aspect of diuretic therapy is to prevent the development of tolerance to other antihypertensive drugs.
TYPES OF DIURETICS
A. Thiazide Diuretics examples include chlorothiazide
hydrochlorothiazide
a concern with these drugs is the loss of potassium as well as sodium
B. Loop Diuretics (High Ceiling Diuretics) examples include
furosemide (Lasix)
bumetanide
these compounds produce a powerful diuresis and are capable of producing severe derangements of electrolyte balance
C. Potassium Sparing Diuretics examples include
triamterene
amiloride
spironolactone
unlike the other diuretics, these agents do not cause loss of potassium
Mechanism of Action
Initial effects: through reduction of plasma volume and cardiac output.
Long term effect: through decrease in total peripheral vascular resistance.
Advantages
Documented reduction in cardiovascular morbidity and mortality.
Least expensive antihypertensive drugs.
Best drug for treatment of systolic hypertension and for hypertension in theelderly.
Can be combined with all other antihypertensive drugs to produce synergetic effect.
Side Effects
Metabolic effects (uncommon with small doses): hypokalemia,hypomagnesemia, hyponatremia, hyperuricemia, dyslipidemia (increased total
and LDL cholesterol), impaired glucose tolerance, and hypercalcemia (with thiazides).
Postural hypotension.
Impotence in up to 22% of patients.
Considerations
- Moderate salt restriction is the key for effective antihypertensive effect of diuretics and for protection from diuretic - induced hypokalaemia.
- Thiazides are not effective in patients with renal failure (serum creatinine > 2mg /dl) because of reduced glomerular filtration rate.
- Frusemide needs frequent doses ( 2-3 /day ).Thiazides can be given once daily or every other day.
- Potassium supplements should not be routinely combined with thiazide or loop diuretics. They are indicated with hypokalemia (serum potassium < 3.5 mEq/L) especially with concomitant digitalis therapy or left ventricular hypertrophy.
- Nonsteroidal antiinflammatory drugs can antagonize diuretics effectiveness.
Special Indications
Diuretics should be the primary choice in all hypertensives.
They are indicated in:
- Volume dependent forms of hypertension: blacks, elderly, diabetic, renal and obese hypertensives.
- Hypertension complicated with heart failure.
- Resistant hypertension: loop diuretics in large doses are recommended.
- Renal impairment: loop diuretics
On the basis of Receptors, drugs can be divided into four groups,
a. agonists
b. antagonists
c. agonist-antagonists
d. partial agonists
a. Agonist
morphine fentanyl pethidine
Action : activation of all receptor subclasses, though, with different affinities
b. Antagonist
Naloxone , Naltrexone
Action : Devoid of activity at all receptor classes
c. Partial Agonist: (Mixed Narcotic Agonists/Antagonists)
Pentazocine, Nalbuphine, Butorphanol , Buprenorphine
Action: activity at one or more, but not all receptor types
With regard to partial agonists, receptor theory states that drugs have two independent properties at receptor sites,
a. affinity
The ability, or avidity to bind to the receptor
Proportional to the association rate constant, Ka
b. efficacy
or, intrinsic activity, and is the ability of the D-R complex to initiate a pharmacological effect
Drugs that produce a less than maximal response and, therefore, have a low intrinsic activity are called partial agonists.
These drugs display certain pharmacological features,
a. the slope of the dose-response curve is less than that of a full agonist
b. the dose response curve exhibits a ceiling with the maximal response below that obtainable by a full agonist
c. partial agonists are able to antagonise the effects of large doses of full agonists
Different Systems of the CNS & their functions
These systems are pathways formed of specific parts of the brain and the neurons connecting them.
They include:
1.The pyramidal system
2.The extrapyramidal system
3.The limbic system
4.The reticular formation
5.The tuberohypophyseal system
The pyramidal system:
It originates from the motor area of the cerebral cortex and passes through the spinal cord, therefore it is also known as the “corticospinaltract”.
It is responsible for the regulation of the fine voluntary movements.
The extrapyramidal system:
It also controls the motor functionbut involves areas other than the corticospinal tract.
It is involved in the regulation of gross voluntary movements, thus it complements the function of the pyramidal system.
The “basal ganglia” constitute an essential part of this system.
Degenerative changes in the pathway running from the “substantianigra”to the “corpus striatum”(or nigrostriatal pathway) may cause tremors and muscle rigidity characteristic of “Parkinson’s disease”.
The limbic system:
The major parts of this system are: the hypothalamus, the basal ganglia, the hippocampus(responsible for short term memory), and some cortical areas.
The limbic system is involved in the control of “behavior”& “emotions”.
The reticular formation:
It is composed of interlacing fibers and nerve cells that run in all directions beginning from the upper part of the spinal cord and extending upwards.
It is important in the control of “consciousness” and “wakefulness”.
The tuberohypophyseal system:
It is a group of short neurons running from the hypothalamusto the hypophysis(pituitary gland) regulating its secretions.