NEET MDS Lessons
Pharmacology
TCI -Target Controlled Infusion
TCI is an infusion system which allows the anaesthetist to select the target blood concentration required for a particular effect and then to control depth of anaesthesia by adjusting the requested target concentration
Mechanism
Instead of setting ml/h or a dose rate (mg/kg/h), the pump can be programmed to target a required blood concentration.
• Effect site concentration targeting is now included for certain pharmacokinetic models.
• The pump will automatically calculate how much is needed as induction and maintenance to maintain that concentration.
Antipsychotic Drugs
A. Neuroleptics: antipsychotics; refers to ability of drugs to suppress motor activity and emotional expression (e.g., chlorpromazine shuffle)
Uses: primarily to treat symptoms of schizophrenia (thought disorder); also for psychoses (include drug-induced from amphetamine and cocaine), agitated states
Psychosis: variety of mental disorders (e.g., impaired perceptions, cognition, inappropriate or ↓ affect or mood)
Examples: dementias (Alzheimer’s), bipolar affective disorder (manic-depressive)
B. Schizophrenia: 1% world-wide incidence (independent of time, culture, geography, politics); early onset (adolescence/young adulthood), life-long and progressive; treatment effective in ~ 50% (relieve symptoms but don’t cure)
Symptoms: antipsychotics control positive symptoms better than negative
a. Positive: exaggerated/distorted normal function; commonly have hallucinations (auditory) and delusions (grandeur; paranoid delusions particularly prevalent; the most prevalent delusion is that thoughts are broadcast to world or thoughts/feelings are imposed by an external force)
b. Negative: loss of normal function; see social withdrawal, blunted affect (emotions), ↓ speech and thought, loss of energy, inability to experience pleasure
Etiology: pathogenesis unkown but see biochemical (↑ dopamine receptors), structural (enlarged cerebral ventricles, cortical atrophy, ↓ volume of basal ganglia), functional (↓ cerebral blood flow, ↓ glucose utilization in prefrontal cortex), and genetic abnormalities (genetic predisposition, may involve multiple genes; important)
Dopamine hypothesis: schizo symptoms due to abnormal ↑ in dopamine receptor activity; evidenced by
i. Correlation between potency and dopamine receptor antagonist binding: high correlation between therapeutic potency and their affinity for binding to D2 receptor, low correlation between potency and binding to D1 receptor)
ii. Drugs that ↑ dopamine transmission can enhance schizophrenia or produce schizophrenic symptoms:
A) L-DOPA: ↑ dopamine synthesis
B) Chronic amphetamine use: releases dopamine
C) Apomorphine: dopamine agonist
iii. Dopamine receptors ↑ in brains of schizophrenics: postmortem brains, positron emission tomography
Dopamine pathways: don’t need to know details below; know that overactivity of dopamine neurons in mesolimbic and mesolimbocortical pathways → schizo symptoms
i. Dorsal mesostriatal (nigrostriatal): substantia nigra to striatum; controls motor function
ii. Ventral mesostriatal (mesolimbic): ventral tegmentum to nucleus accumbens; controls behavior/emotion; abnormally active in schizophrenia
iii. Mesolimbocortical: ventral tegmentum to cortex and limbic structures; controls behavior and emotion; activity may be ↑ in schizophrenia
iv. Tuberohypophyseal: hypothalamus to pituitary; inhibits prolactin secretion; important pathway to understand side effects
Antipsychotic drugs: non-compliance is major reason for therapeutic failure
1. Goals: prevent symptoms, improve quality of life, minimize side effects
2. Prototypical drugs: chlorpromazine (phenothiazine derivative) and haloperidol (butyrophenone derivative)
a. Provide symptomatic relief in 70%; delayed onset of action (4-8 weeks) and don’t know why (maybe from ↓ firing of dopamine neurons that project to meso-limbic and cortical regions)
3. Older drugs: equally efficacious in treating schizophrenia; no abuse potential, little physical dependence; dysphoria in normal individuals; high therapeutic indexes (20-1000)
Classification:
i. Phenothiazines: 1st effective antipsychotics; chlorpromazine and thioridazine
ii. Thioxanthines: less potent; thithixene
iii. Butyrophenones: most widely used; haloperidol
Side effects: many (so known as dirty drugs); block several NT receptors (adrenergic, cholindergic, histamine, dopamine, serotonin) and D2 receptors in other pathways
i. Autonomic: block muscarinic receptor (dry mouth, urinary retention, memory impairment), α-adrenoceptor (postural hypotension, reflex tachycardia)
Neuroleptic malignant syndrome: collapse of ANS; fever, diaphoresis, CV instability; incidence 1-2% of patients (fatal in 10%); need immediate treatment (bromocriptine- dopamine agonist)
ii. Central: block DA receptor (striatum; have parkinsonian effects like bradykinesia/tremor/muscle rigidity, dystonias like neck/facial spasms, and akathisia—subject to motor restlessness), dopamine receptor (pituitary; have ↑ prolactin release, breast enlargement, galactorrhea, amenorrhea), histamine receptor (sedation)
DA receptor upregulation (supersensitivity): occurs after several months/years; see tardive dyskinesias (involuntary orofacial movements)
Drug interactions: induces hepatic metabolizing enzymes (↑ drug metabolism), potentiate CNS depressant effects (analgesics, general anesthetics, CNS depressants), D2 antagonists block therapeutic effects of L-DOPA used to treat Parkinson’s
Toxicity: high therapeutic indexes; acute toxicity seen only at very high doses (hypotension, hyper/hypothermia, seizures, coma, ventricular tachycardia)
Mechanism of action: D2 receptor antagonists, efficacy ↑ with ↑ potency at D2 receptor
Newer drugs: include clozapine (dibenzodiazepine; has preferential affinity for D4 receptors, low affinity for D2 receptors), risperidone (benzisoxazole), olanzapine (thienobenzodiazepine)
Advantages over older drugs: low incidence of agranulocytosis (leucopenia; exception is clozapine), very low incidence of motor disturbances (extrapyramidal signs; may be due to low affinity for D2 receptors), no prolactin elevation
Side effects: DA receptor upregulation (supersensitivity) occurs after several months/years; may → tardive diskinesias
Different Systems of the CNS & their functions
These systems are pathways formed of specific parts of the brain and the neurons connecting them.
They include:
1.The pyramidal system
2.The extrapyramidal system
3.The limbic system
4.The reticular formation
5.The tuberohypophyseal system
The pyramidal system:
It originates from the motor area of the cerebral cortex and passes through the spinal cord, therefore it is also known as the “corticospinaltract”.
It is responsible for the regulation of the fine voluntary movements.
The extrapyramidal system:
It also controls the motor functionbut involves areas other than the corticospinal tract.
It is involved in the regulation of gross voluntary movements, thus it complements the function of the pyramidal system.
The “basal ganglia” constitute an essential part of this system.
Degenerative changes in the pathway running from the “substantianigra”to the “corpus striatum”(or nigrostriatal pathway) may cause tremors and muscle rigidity characteristic of “Parkinson’s disease”.
The limbic system:
The major parts of this system are: the hypothalamus, the basal ganglia, the hippocampus(responsible for short term memory), and some cortical areas.
The limbic system is involved in the control of “behavior”& “emotions”.
The reticular formation:
It is composed of interlacing fibers and nerve cells that run in all directions beginning from the upper part of the spinal cord and extending upwards.
It is important in the control of “consciousness” and “wakefulness”.
The tuberohypophyseal system:
It is a group of short neurons running from the hypothalamusto the hypophysis(pituitary gland) regulating its secretions.
ANTIDEPRESSANTS
Monoamine uptake inhibitors
1. Tricyclic antidepressants (TCAs)
2. Selective serotonin reuptake inhibitors (SSRIs)
3. Serotonin-norepinephrine reuptake inhibitors(SNRIs)
4. Norepinephrine reuptake inhibitor
Monoamine oxidase inhibitors (MAOIs)
Monoamine receptor antagonists
Agonist, Antagonist, and Partial Agonists
Agonists: molecules that activate receptors. A drug that mimics the body's own regulatory processes.
Antagonists: produce their effects by preventing receptors activation by endogenous regulatory molecules and drugs. Block activation of receptors by agonists.
Noncompetive Antagonist: Bind irreversibly to receptors, and reduce the maximal response that an agonist can elicit.
Competitive Antagonist: Bind reversibly to receptors, competing with agonists for binding sites.
Partial Agonists: Have moderate intrinsic activity, the maximal effect that a partial agonist can produce is lower than that of a full agonist. Act as antagonists as well as agonists.
Thrombolytic Agents:
Tissue Plasminogen Activator (t-PA, Activase)
t-PA is a serine protease. It is a poor plasminogen activator in the absence of fibrin. t-PA binds to fibrin and activates bound plasminogen several hundred-fold more rapidly than it activates plasminogen in the circulation.
Streptokinase (Streptase)
Streptokinase is a protein produced by β-hemolytic streptococci. It has no intrinsic enzymatic activity, but forms a stable noncovalent 1:1 complex with plasminogen. This produces a conformational change that exposes the active site on plasminogen that cleaves a peptide bond on free plasminogen molecules to form free plasmin.
Urokinase (Abbokinase)
Urokinase is isolated from cultured human cells.Like streptokinase, it lacks fibrin specificity and therefore readily induces a systemic lytic state. Like t-PA, Urokinase is very expensive.
Contraindications to Thrombolytic Therapy:
• Surgery within 10 days, including organ biopsy, puncture of noncompressible vessels, serious trauma, cardiopulmonary resuscitation.
• Serious gastrointestinal bleeding within 3 months.
• History of hypertension (diastolic pressure >110 mm Hg).
• Active bleeding or hemorrhagic disorder.
• Previous cerebrovascular accident or active intracranial bleeding.
Aminocaproic acid:
Aminocaproic acid prevents the binding or plasminogen and plasmin to fibrin. It is a potent inhibitor for fibrinolysis and can reverse states that are associated with excessive fibrinolysis.
SYMPATHOMIMETICS
β2 -agonists are invariably used in the symptomatic treatment of asthma.
Epinephrine and ephedrine are structurally related to the catecholamine norepinephrine, a neurotransmitter of the adrenergic nervous system
Some of the important β 2 agonists like salmeterol, terbutaline and salbutamol are invariably used as bronchodilators both oral as well as
aerosol inhalants
SALBUTAMOL
It is highly selective β2 -adrenergic stimulant h-aving a prominent bronchodilator action.
It has poor cardiac action compared to isoprenaline.
TERBUTALINE
It is highly selective β2 agonist similar to salbutamol, useful by oral as well as inhalational route.
SALMETEROL
Salmeterol is long-acting analogue of salbutamol
BAMBUTEROL
It is a latest selective adrenergic β2 agonist with long plasma half life and given once daily in a dose of 10-20 mg orally.
METHYLXANTHINES (THEOPHYLLINE AND ITS DERIVATIVES)
THEOPHYLLINE
Theophylline has two distinct action:
smooth muscle relaxation (i.e. bronchodilatation) and suppression of the response of the airways to stimuli (i.e. non-bronchodilator prophylactic effects).
ANTICHOLINERGICS
Anticholinergics, like atropine and its derivative ipratropium bromide block cholinergic pathways that cause airway constriction.
MAST CELL STABILIZERS
SODIUM CROMOGLYCATE
It inhibits degranulation of mast cells by trigger stimuli.
It also inhibits the release of various asthma provoking mediators e.g. histamine, leukotrienes, platelet activating factor (PAF) and interleukins (IL’s) from mast cell
KETOTIFEN
It is a cromolyn analogue. It is an antihistaminic (H1 antagonist) and probably inhibits airway inflammation induced by platelet activating factor (PAF) in primate.
It is not a bronchodilator. It is used in asthma and symptomatic relief in atopic dermatitis, rhinitis, conjunctivitis and urticaria.
LEUKOTRIENE PATHWAY INHIBITORS
MONTELUKAST
It is a cysteinyl leukotriene receptor antagonist indicated for the management of persistent asthma.