NEET MDS Lessons
Pharmacology
TCI -Target Controlled Infusion
TCI is an infusion system which allows the anaesthetist to select the target blood concentration required for a particular effect and then to control depth of anaesthesia by adjusting the requested target concentration
Mechanism
Instead of setting ml/h or a dose rate (mg/kg/h), the pump can be programmed to target a required blood concentration.
• Effect site concentration targeting is now included for certain pharmacokinetic models.
• The pump will automatically calculate how much is needed as induction and maintenance to maintain that concentration.
Antipsychotic Drugs
A. Neuroleptics: antipsychotics; refers to ability of drugs to suppress motor activity and emotional expression (e.g., chlorpromazine shuffle)
Uses: primarily to treat symptoms of schizophrenia (thought disorder); also for psychoses (include drug-induced from amphetamine and cocaine), agitated states
Psychosis: variety of mental disorders (e.g., impaired perceptions, cognition, inappropriate or ↓ affect or mood)
Examples: dementias (Alzheimer’s), bipolar affective disorder (manic-depressive)
B. Schizophrenia: 1% world-wide incidence (independent of time, culture, geography, politics); early onset (adolescence/young adulthood), life-long and progressive; treatment effective in ~ 50% (relieve symptoms but don’t cure)
Symptoms: antipsychotics control positive symptoms better than negative
a. Positive: exaggerated/distorted normal function; commonly have hallucinations (auditory) and delusions (grandeur; paranoid delusions particularly prevalent; the most prevalent delusion is that thoughts are broadcast to world or thoughts/feelings are imposed by an external force)
b. Negative: loss of normal function; see social withdrawal, blunted affect (emotions), ↓ speech and thought, loss of energy, inability to experience pleasure
Etiology: pathogenesis unkown but see biochemical (↑ dopamine receptors), structural (enlarged cerebral ventricles, cortical atrophy, ↓ volume of basal ganglia), functional (↓ cerebral blood flow, ↓ glucose utilization in prefrontal cortex), and genetic abnormalities (genetic predisposition, may involve multiple genes; important)
Dopamine hypothesis: schizo symptoms due to abnormal ↑ in dopamine receptor activity; evidenced by
i. Correlation between potency and dopamine receptor antagonist binding: high correlation between therapeutic potency and their affinity for binding to D2 receptor, low correlation between potency and binding to D1 receptor)
ii. Drugs that ↑ dopamine transmission can enhance schizophrenia or produce schizophrenic symptoms:
A) L-DOPA: ↑ dopamine synthesis
B) Chronic amphetamine use: releases dopamine
C) Apomorphine: dopamine agonist
iii. Dopamine receptors ↑ in brains of schizophrenics: postmortem brains, positron emission tomography
Dopamine pathways: don’t need to know details below; know that overactivity of dopamine neurons in mesolimbic and mesolimbocortical pathways → schizo symptoms
i. Dorsal mesostriatal (nigrostriatal): substantia nigra to striatum; controls motor function
ii. Ventral mesostriatal (mesolimbic): ventral tegmentum to nucleus accumbens; controls behavior/emotion; abnormally active in schizophrenia
iii. Mesolimbocortical: ventral tegmentum to cortex and limbic structures; controls behavior and emotion; activity may be ↑ in schizophrenia
iv. Tuberohypophyseal: hypothalamus to pituitary; inhibits prolactin secretion; important pathway to understand side effects
Antipsychotic drugs: non-compliance is major reason for therapeutic failure
1. Goals: prevent symptoms, improve quality of life, minimize side effects
2. Prototypical drugs: chlorpromazine (phenothiazine derivative) and haloperidol (butyrophenone derivative)
a. Provide symptomatic relief in 70%; delayed onset of action (4-8 weeks) and don’t know why (maybe from ↓ firing of dopamine neurons that project to meso-limbic and cortical regions)
3. Older drugs: equally efficacious in treating schizophrenia; no abuse potential, little physical dependence; dysphoria in normal individuals; high therapeutic indexes (20-1000)
Classification:
i. Phenothiazines: 1st effective antipsychotics; chlorpromazine and thioridazine
ii. Thioxanthines: less potent; thithixene
iii. Butyrophenones: most widely used; haloperidol
Side effects: many (so known as dirty drugs); block several NT receptors (adrenergic, cholindergic, histamine, dopamine, serotonin) and D2 receptors in other pathways
i. Autonomic: block muscarinic receptor (dry mouth, urinary retention, memory impairment), α-adrenoceptor (postural hypotension, reflex tachycardia)
Neuroleptic malignant syndrome: collapse of ANS; fever, diaphoresis, CV instability; incidence 1-2% of patients (fatal in 10%); need immediate treatment (bromocriptine- dopamine agonist)
ii. Central: block DA receptor (striatum; have parkinsonian effects like bradykinesia/tremor/muscle rigidity, dystonias like neck/facial spasms, and akathisia—subject to motor restlessness), dopamine receptor (pituitary; have ↑ prolactin release, breast enlargement, galactorrhea, amenorrhea), histamine receptor (sedation)
DA receptor upregulation (supersensitivity): occurs after several months/years; see tardive dyskinesias (involuntary orofacial movements)
Drug interactions: induces hepatic metabolizing enzymes (↑ drug metabolism), potentiate CNS depressant effects (analgesics, general anesthetics, CNS depressants), D2 antagonists block therapeutic effects of L-DOPA used to treat Parkinson’s
Toxicity: high therapeutic indexes; acute toxicity seen only at very high doses (hypotension, hyper/hypothermia, seizures, coma, ventricular tachycardia)
Mechanism of action: D2 receptor antagonists, efficacy ↑ with ↑ potency at D2 receptor
Newer drugs: include clozapine (dibenzodiazepine; has preferential affinity for D4 receptors, low affinity for D2 receptors), risperidone (benzisoxazole), olanzapine (thienobenzodiazepine)
Advantages over older drugs: low incidence of agranulocytosis (leucopenia; exception is clozapine), very low incidence of motor disturbances (extrapyramidal signs; may be due to low affinity for D2 receptors), no prolactin elevation
Side effects: DA receptor upregulation (supersensitivity) occurs after several months/years; may → tardive diskinesias
Hypothalamic - Pituitary Drugs
Somatropin
Growth hormone (GH) mimetic
Mechanism
agonist at GH receptors
increases production of insulin growth factor-1 (IGF-1)
Clinical use
GH deficiency
increase adult height for children with conditions associated with short stature
Turner syndrome
wasting in HIV infection
short bowel syndrome
Toxicity
scoliosis
edema
gynecomastia
increased CYP450 activity
Octreotide
Somatostatin mimetic
Mechanism
agonist at somatostatin receptors
Clinical use
acromegaly
carcinoid
gastrinoma
glucagonoma
acute esophageal variceal bleed
Toxicity
GI upset
gallstones
bradycardia
Oxytocin
Mechanism
agonist at oxytocin receptor
Clinical use
stimulation of labor
uterine contractions
control of uterine hemorrhage after delivery
stimulate milk letdown
Toxicity
fetal distress
abruptio placentae
uterine rupture
Desmopressin
ADH (vasopressin) mimetic
Mechanism
agonist at vasopressin V2 receptors
Clinical use
central (pituitary) diabetes insipidus
hemophilia A (factor VIII deficiency)
increases availability of factor VIII
von Willebrand disease
increases release of von Willebrand factor from endothelial cells
Toxicity
GI upset
headache
hyponatremia
allergic reaction
SULPHONAMIDES
Derivative of sulphonilamide (Para-amino Benzene (PABA ) sulphonamide).
Anti-bacterial spectrum
Bacteriostatic to gram + and gram - bacteria. but bactericidal concentrations arce attained in urine. S pyogencs. H influenzae.E coli, few- Staph aureus. gonococci. pneumococci, proteus, shigella and Lymphogranuloma venereum.
Mechanism of action
Inhibits bacterial folate synthetase as they compete with PABA
Less soluble in acid urine and may precipitate to cause crystalluria.
Accumulate in patients with renal failure and can cause toxicity
Classification
Shart Acting (4-8 Hrs) sulphadiazine, sulphamethizole.
Intermediate acting(8-16 Hrs): sulphamethoxazole , sulphaphenazole
Long Acting(l-7days): sulphamethoxypyridazine.
Ultralong Acting(3-8days): sulfaline
Adverse effects
I. nausea, vomiting and epigastric pain
2. crystalluria
3. hypersensitivity-like polyarthritis nodosa. Steven-Johnson Syndrome. photosenstivity
4.hemolysis in G-6PD deficiency
5. kernicterus
They inhibit metabolism of phenytoin. tolbutamide. methotrexate
Therapeutic Use
UTI Meningitis, Streptococcal pharyngitis, Bacillary Dysentery
Neuron Basic Structure (How brain cells communicate)
• Synapse:A junction between the terminal button of an axon and the membrane of another neuron
• Terminal button(orbouton):The bud at the end of a branch of an axon; forms synapses with another neuron; sends information to that neuron.
• Neurotransmitter:A chemical that is released by a terminal button; has an excitatory or inhibitory effect on another neuron.
Different types of Synapses
1-Axo-denrdritic
2-Axo-axonal
3-Axo-somatic
Chemical transmission in the CNS
The CNS controls the main functions of the body through the action endogenous chemical substances known as “neurotransmitters”.
These neurotransmitters are stored in and secreted by neurons to “transmit”information to the postsynaptic sites producing either excitatoryor inhibitory responses.
Most centrally acting drugs exert their actions at the synaptic junctions by either affecting neurotransmitter synthesis, release, uptake, or by exerting direct agonistor antagonistaction on postsynaptic sites.
CHOLINERGIC DRUGS
Produce actions similar to Acetylcholine (Ach)
Cholinergic Agonists
1 Acetylcholine 2 Methacholine 3. Carbachol 4 Bethnechol
Alkaloids
1.Muscarine 2 Pilocarpine 3. Arecoline
MECHANISM OF ACTION
I Heart- hyperpolarizes the SA node and decreases the rate of diastolic depolarisation. thus the frequcncy of impulse generation is decreased. bradycardia.
2 Blood vessels- vasodilatation
3. Smooth muscles - increased contraction. increased tone. increased peristalsis.
4. Glands- increased sweating. increased lacrimation.
5 Eye- contraction of the circular muscle of iris (miosis).
Nicotinic action
Autonomic ganglia - stimu1ation of sympathetic and parasympathetic system.
Skeletalmuscles - contraction of fibres.
CNS..No effect as it does not penetrate the blood-brain barrier.
Toxic effects
Flushing. sweating.salivation. cramps. belching. involuntary mictuirition. defaccation.
Contraindication
1.. Anginapectoris- decreases the coronary flow.
2 Pepticulcer - increases the gastric secretion
3 Asthma- bronchoconstriction
4 Hyperthyroidisim
Cholinomimetic Alkaloids
Pilocarpine
Prominent muscarinic actions. causes marked sweating. salivation. Increase of secretions. small doses cause fall in BP but higher doses increase in BP. Applied to the eye cause miosis. fall in intraocular tension
Uses
I. .Open angle glaucoma
2. To counteract mydriasis
Anticholinesterase
They inhibit the enzyme cholinestrase and prolong the action of Ach
Reversible
Physostigamine, Ncostigamine, Pyridostigamine, Ambenonium, Edrophonium, Demecarium
Irreverible
Dyflos. Echothiphate.
Pharmacological Actions
I Ganglia - persistent depolarisation of ganglionic nicotinic receptors.
2 CVS - unprcdictable as Muscarinic-I receptor causes bradycardia but ganglionic stimulation
tachycardia.
3. Skeletal muscles - as Ach is not destroyed and rebinds to the same receptor or it diffuses on to the neighbouring receptors to cause repetitive firing. twitching and fasciculations.
Uses
I As miotic
a) Glaucoma : Acute congestive (narrow angle) glaucoma, Chronic simple (wide angle) glaucoma
b) Counter act atropine mydriasis.
2) Post operative paralytic ileus
3) Myasthenia gravis
4) Postoperativedecurarization
5) Cobra bite
6) Belladona poisoning
7) Other drug overdoses
Agonist, Antagonist, and Partial Agonists
Agonists: molecules that activate receptors. A drug that mimics the body's own regulatory processes.
Antagonists: produce their effects by preventing receptors activation by endogenous regulatory molecules and drugs. Block activation of receptors by agonists.
Noncompetive Antagonist: Bind irreversibly to receptors, and reduce the maximal response that an agonist can elicit.
Competitive Antagonist: Bind reversibly to receptors, competing with agonists for binding sites.
Partial Agonists: Have moderate intrinsic activity, the maximal effect that a partial agonist can produce is lower than that of a full agonist. Act as antagonists as well as agonists.