Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

TCI -Target Controlled Infusion

TCI is an infusion system which allows the anaesthetist to select the target blood concentration required for a particular effect and then to control depth of anaesthesia by adjusting the requested target concentration

Mechanism

Instead of setting ml/h or a dose rate (mg/kg/h), the pump can be programmed to target a required blood concentration.

• Effect site concentration targeting is now included for certain pharmacokinetic models.

• The pump will automatically calculate how much is needed as induction and maintenance to maintain that concentration.

Antipsychotic Drugs

A.    Neuroleptics: antipsychotics; refers to ability of drugs to suppress motor activity and emotional expression (e.g., chlorpromazine shuffle)
Uses: primarily to treat symptoms of schizophrenia (thought disorder); also for psychoses (include drug-induced from amphetamine and cocaine), agitated states

Psychosis: variety of mental disorders (e.g., impaired perceptions, cognition, inappropriate or ↓ affect or mood)

Examples: dementias (Alzheimer’s), bipolar affective disorder (manic-depressive)

B.    Schizophrenia: 1% world-wide incidence (independent of time, culture, geography, politics); early onset (adolescence/young adulthood), life-long and progressive; treatment effective in ~ 50% (relieve symptoms but don’t cure)

Symptoms: antipsychotics control positive symptoms better than negative

a.    Positive: exaggerated/distorted normal function; commonly have hallucinations (auditory) and delusions (grandeur; paranoid delusions particularly prevalent; the most prevalent delusion is that thoughts are broadcast to world or thoughts/feelings are imposed by an external force)

b.    Negative: loss of normal function; see social withdrawal, blunted affect (emotions), ↓ speech and thought, loss of energy, inability to experience pleasure

Etiology: pathogenesis unkown but see biochemical (↑ dopamine receptors), structural (enlarged cerebral ventricles, cortical atrophy, ↓ volume of basal ganglia), functional (↓ cerebral blood flow, ↓ glucose utilization in prefrontal cortex), and genetic abnormalities (genetic predisposition, may involve multiple genes; important)

 Dopamine hypothesis: schizo symptoms due to abnormal ↑ in dopamine receptor activity; evidenced by 

i.    Correlation between potency and dopamine receptor antagonist binding: high correlation between therapeutic potency and their affinity for binding to D2 receptor, low correlation between potency and binding to D1 receptor)

ii.    Drugs that ↑ dopamine transmission can enhance schizophrenia or produce schizophrenic symptoms:

A)    L-DOPA: ↑ dopamine synthesis
B)    Chronic amphetamine use: releases dopamine
C)    Apomorphine: dopamine agonist

iii.    Dopamine receptors ↑ in brains of schizophrenics: postmortem brains, positron emission tomography

Dopamine pathways: don’t need to know details below; know that overactivity of dopamine neurons in mesolimbic and mesolimbocortical pathways → schizo symptoms

i.    Dorsal mesostriatal (nigrostriatal): substantia nigra to striatum; controls motor function
ii.    Ventral mesostriatal (mesolimbic): ventral tegmentum to nucleus accumbens; controls behavior/emotion; abnormally active in schizophrenia
iii.    Mesolimbocortical: ventral tegmentum to cortex and limbic structures; controls behavior and emotion; activity may be ↑ in schizophrenia
iv.    Tuberohypophyseal: hypothalamus to pituitary; inhibits prolactin secretion; important pathway to understand side effects

 Antipsychotic drugs: non-compliance is major reason for therapeutic failure

1.    Goals: prevent symptoms, improve quality of life, minimize side effects
2.    Prototypical drugs: chlorpromazine (phenothiazine derivative) and haloperidol (butyrophenone derivative)
a.    Provide symptomatic relief in 70%; delayed onset of action (4-8 weeks) and don’t know why (maybe from ↓ firing of dopamine neurons that project to meso-limbic and cortical regions)
3.    Older drugs: equally efficacious in treating schizophrenia; no abuse potential, little physical dependence; dysphoria in normal individuals; high therapeutic indexes (20-1000)

Classification: 

i.    Phenothiazines: 1st effective antipsychotics; chlorpromazine and thioridazine
ii.    Thioxanthines: less potent; thithixene
iii.    Butyrophenones: most widely used; haloperidol

 Side effects: many (so known as dirty drugs); block several NT receptors (adrenergic, cholindergic, histamine, dopamine, serotonin)  and D2 receptors in other pathways

i.    Autonomic: block muscarinic receptor (dry mouth, urinary retention, memory impairment), α-adrenoceptor (postural hypotension, reflex tachycardia)
Neuroleptic malignant syndrome: collapse of ANS; fever, diaphoresis, CV instability; incidence 1-2% of patients (fatal in 10%); need immediate treatment (bromocriptine- dopamine agonist)

ii.    Central: block DA receptor (striatum; have parkinsonian effects like bradykinesia/tremor/muscle rigidity, dystonias like neck/facial spasms, and akathisia—subject to motor restlessness), dopamine receptor (pituitary; have ↑ prolactin release, breast enlargement, galactorrhea, amenorrhea), histamine receptor (sedation)

DA receptor upregulation (supersensitivity): occurs after several months/years; see tardive dyskinesias (involuntary orofacial movements)

Drug interactions: induces hepatic metabolizing enzymes (↑ drug metabolism), potentiate CNS depressant effects (analgesics, general anesthetics, CNS depressants), D2 antagonists block therapeutic effects of L-DOPA used to treat Parkinson’s

Toxicity: high therapeutic indexes; acute toxicity seen only at very high doses (hypotension, hyper/hypothermia, seizures, coma, ventricular tachycardia)

Mechanism of action: D2 receptor antagonists, efficacy ↑ with ↑ potency at D2 receptor

Newer drugs: include clozapine (dibenzodiazepine; has preferential affinity for D4 receptors, low affinity for D2 receptors), risperidone (benzisoxazole), olanzapine (thienobenzodiazepine)

Advantages over older drugs: low incidence of agranulocytosis (leucopenia; exception is clozapine), very low incidence of motor disturbances (extrapyramidal signs; may be due to low affinity for D2 receptors), no prolactin elevation

Side effects: DA receptor upregulation (supersensitivity) occurs after several months/years; may → tardive diskinesias
 

Hypothalamic - Pituitary Drugs

Somatropin

Growth hormone (GH) mimetic

Mechanism

agonist at GH receptors
increases production of insulin growth factor-1 (IGF-1)

Clinical use

GH deficiency
increase adult height for children with conditions associated with short stature 
Turner syndrome
wasting in HIV infection
short bowel syndrome

Toxicity

scoliosis
edema
gynecomastia
increased CYP450 activity


Octreotide

Somatostatin mimetic

Mechanism

agonist at somatostatin receptors

Clinical use

acromegaly
carcinoid
gastrinoma
glucagonoma
acute esophageal variceal bleed

Toxicity

GI upset
gallstones
bradycardia
Oxytocin

Mechanism

agonist at oxytocin receptor

Clinical use

stimulation of labor
uterine contractions
control of uterine hemorrhage after delivery
stimulate milk letdown

Toxicity

fetal distress 
abruptio placentae 
uterine rupture
Desmopressin
ADH (vasopressin) mimetic

Mechanism

agonist at vasopressin V2 receptors

Clinical use

central (pituitary) diabetes insipidus
hemophilia A (factor VIII deficiency)
increases availability of factor VIII
von Willebrand disease
increases release of von Willebrand factor from endothelial cells

Toxicity

GI upset
headache
hyponatremia
allergic reaction

SULPHONAMIDES

Derivative of  sulphonilamide (Para-amino Benzene (PABA ) sulphonamide).

Anti-bacterial spectrum

Bacteriostatic to gram + and gram - bacteria. but bactericidal concentrations arce attained in urine. S pyogencs. H influenzae.E coli, few- Staph aureus. gonococci. pneumococci, proteus, shigella and Lymphogranuloma venereum.

Mechanism of action

Inhibits bacterial folate synthetase as they compete with PABA

Less soluble in acid urine and may precipitate to cause crystalluria.

Accumulate in patients with renal failure and can cause toxicity

Classification

Shart Acting (4-8 Hrs) sulphadiazine, sulphamethizole.

Intermediate acting(8-16 Hrs): sulphamethoxazole , sulphaphenazole

Long Acting(l-7days): sulphamethoxypyridazine.

Ultralong Acting(3-8days): sulfaline

Adverse effects

I. nausea, vomiting and epigastric pain

2. crystalluria

3. hypersensitivity-like polyarthritis nodosa. Steven-Johnson Syndrome. photosenstivity

4.hemolysis in G-6PD deficiency

5. kernicterus

They inhibit metabolism of phenytoin. tolbutamide. methotrexate

Therapeutic Use

UTI Meningitis, Streptococcal pharyngitis, Bacillary Dysentery

Neuron Basic Structure (How brain cells communicate)

• Synapse:A junction between the terminal button of an axon and the membrane of another neuron
• Terminal button(orbouton):The bud at the end of a branch of an axon; forms synapses with another neuron; sends information to that neuron.
• Neurotransmitter:A chemical that is released by a terminal button; has an excitatory or inhibitory effect on another neuron.

Different types of Synapses
1-Axo-denrdritic 
2-Axo-axonal 
3-Axo-somatic

Chemical transmission in the CNS 


The CNS controls the main functions of the body through the action endogenous chemical substances known as “neurotransmitters”.
These neurotransmitters are stored in and secreted by neurons to “transmit”information to the postsynaptic sites producing either excitatoryor inhibitory responses.
Most centrally acting drugs exert their actions at the synaptic junctions by either affecting neurotransmitter synthesis, release, uptake, or by exerting direct agonistor antagonistaction on postsynaptic sites.

CHOLINERGIC DRUGS

Produce actions similar to Acetylcholine (Ach)

Cholinergic Agonists
1 Acetylcholine  2 Methacholine  3. Carbachol 4 Bethnechol

Alkaloids
1.Muscarine 2 Pilocarpine 3. Arecoline

MECHANISM OF ACTION
I Heart- hyperpolarizes the SA node and decreases the rate of diastolic depolarisation. thus the frequcncy of impulse generation is decreased. bradycardia.
2 Blood vessels- vasodilatation
3. Smooth muscles - increased contraction. increased tone. increased peristalsis.
4. Glands- increased sweating. increased lacrimation.
5 Eye- contraction of the circular muscle of iris (miosis).

Nicotinic action
Autonomic ganglia - stimu1ation of sympathetic and parasympathetic system.
Skeletalmuscles - contraction of fibres.
CNS..No effect as it does not penetrate the blood-brain barrier.

Toxic effects
Flushing. sweating.salivation. cramps. belching. involuntary mictuirition. defaccation.

Contraindication
1.. Anginapectoris- decreases the coronary flow.
2 Pepticulcer - increases the gastric secretion
3 Asthma- bronchoconstriction
4 Hyperthyroidisim

Cholinomimetic Alkaloids
Pilocarpine
Prominent muscarinic actions. causes marked sweating. salivation. Increase of secretions. small doses cause fall in BP but higher doses increase in BP. Applied to the eye cause miosis. fall in intraocular tension

Uses
I. .Open angle glaucoma
2. To counteract mydriasis

Anticholinesterase
They inhibit the enzyme cholinestrase and prolong the action of Ach

Reversible 
Physostigamine, Ncostigamine, Pyridostigamine, Ambenonium, Edrophonium, Demecarium

Irreverible
Dyflos. Echothiphate.

Pharmacological Actions
I Ganglia - persistent depolarisation of ganglionic nicotinic receptors.
2 CVS - unprcdictable as Muscarinic-I receptor causes bradycardia but ganglionic stimulation
tachycardia.
3. Skeletal muscles - as Ach is not destroyed and rebinds to the same receptor or it diffuses on to the neighbouring receptors to cause repetitive firing. twitching and fasciculations.

Uses 
I As miotic
a) Glaucoma :  Acute congestive (narrow angle) glaucoma,  Chronic simple (wide angle)  glaucoma
b) Counter act  atropine mydriasis.
2) Post operative paralytic ileus
3) Myasthenia gravis
4) Postoperativedecurarization
5) Cobra bite
6) Belladona poisoning
7) Other drug overdoses

Agonist, Antagonist, and Partial Agonists

Agonists:  molecules that activate receptors.  A drug that mimics the body's own regulatory processes.
Antagonists:  produce their effects by preventing receptors activation by endogenous regulatory molecules and drugs.  Block activation of receptors by agonists.
Noncompetive Antagonist:  Bind irreversibly to receptors, and reduce the maximal response that an agonist can elicit.
Competitive Antagonist:  Bind reversibly to receptors, competing with agonists for binding sites.
Partial Agonists:  Have moderate intrinsic activity, the maximal effect that a partial agonist can produce is lower than that of a full agonist.  Act as antagonists as well as agonists.
 

Explore by Exams