NEET MDS Lessons
Pharmacology
Flucloxacillin, important even now for its resistance to beta-lactamases produced by bacteria such as Staphylococcus species. It is still no match for MRSA (Methicillin Resistant Staphylococcus aureus).
The last in the line of true penicillins were the antipseudomonal penicillins, such as ticarcillin, useful for their activity against Gram-negative bacteria
Antimania Drugs
MANIC SYMPTOMSMANIC SYMPTOMS
Elevated or irritable mood
Increased activity or psychomotor agitation
Reduced need for sleep
Inflated self esteem or grandiosity
Increased or pressure of speech
Flight of ideas
These drugs are used to treat manic-depressive illness.
1. Lithium
2. Carbamazepine
3. Valproic acid
Mechanisms of action
1. Lithium works inside the cell to block conversion of inositol phosphate to inositol.
2. Carbamazepine blocks sodium channels
3. Valproic acid blocks sodium and calcium channels
PHARMACOKINETICS
Absorbed readily and almost completely from the GI tract; peak concentrations in 1-2 hrs
Lithium toxicity
1. Nausea, diarrhea, convulsions, coma, hyperreflexia, cardiac arrhythmias, hypotension.
2. Thyroid enlargement; increases thyroid stimulating hormone (TSH) secretion; may cause hypothyroidism.
3. Polydipsia, polyuria (lithium inhibits the effect of antidiuretic hormone on the kidney).
Clinical applications concerning lithium
- Patients must be warned against sodium-restricted diets because sodium restriction leads to greater retention of lithium by the kidney.
- Patients must have regular (e.g., monthly) blood checks because the margin of safety is narrow.
Endocrine Effects – Goitre and hypothyroidism commonly
Cardiac Effects:– ECG changes(common) - T-wave flattening/inversion and appearance of U wavesflattening/inversion and appearance of U waves
Li and Pregnancy -1st Trimester:Cardiovascular anomalies of the newborn, especially Ebstein's malformation
- 3rd Trimester: Neonatal goiter, CNS depression, hypotonia ("floppy baby" syndrome)
Drug–drug interactions of lithium
Diuretics and newer nonsteroidal anti-inflammatory drugs (NSAIDs) reduce lithium excretion and may cause lithium toxicity.
Neurophysiology
Nerve fibers exhibit wide range of sensitivity to nerve blockade-in order of increasing resistance to block are the sensations of pain, cold, warmth, touch, pressure, proprioception and motor function
Nerve Fibers:
|
Types |
Size |
Speed |
Occurrence |
|
A (α) |
20 µm |
80 - 120 |
Myelinated (Primarily for muscular activity). |
|
β |
8 - 15 µm |
|
Myelinated (Touch and pressure) |
|
γ |
4 - 8 µm |
|
Myelinated (Muscle spindle tone) |
|
δ |
3 - 4 µm |
10-15 |
Myelinated (Pain and temperature sensation) |
|
B |
4 µm |
10-15 |
Myelinated (Preganglionic autonomic) |
|
C |
1-2 µm |
1 - 2 |
Unmyelinated (Pain and temperature sensation) |
Myelinated = faster conducting
Unmyelinated = slower conducting
- Small non-myelinated fibers (C- pain fibers) and smaller myelinated pre-ganglionic B fibers are more readily blocked than are larger myelinated fibers responsible for muscle activity and touch [A-alpha and A-beta].
- Clinically, a person would notice complete lack of sensation to a pinprick, while at the same time still be able to move their fingers.
Non-barbiturate sedatives
1- Chloral hydrate is trichlorinated derivative of acetaldehyde that is converted to trichlorethanol in the body. It induces sleep in about 30 minutes and last up to 6 hr. it is irritant to GIT and produce unpleasant taste sensation.
2- Ramelteon melatonin receptors are thought to be involved in maintaining circadian rhythms underlying the sleep-wake cycle. Ramelteon is an agonist at MT1 and MT2 melatonin receptors , useful in patients with chronic insomnia with no rebound insomnia and
withdrawal symptoms
3- Ethanol (alcohol) it has antianxiety sedative effects but its toxic potential out ways its benefits.
Ethanol is a CNS depressant producing sedation and hypnosis with increasing dose.
Absorption of alcohol taken orally is rapid, it is highly lipid soluble, presence of food delayed its absorption, maximal blood concentration depend on total dose, sex, strength of the solution, the time over which it is taken, the presence of food and speed of metabolism.
Alcohol in the systemic circulation is oxidized in the liver principally 90% by alcohol dehydrogenase to acetaldehyde and then by acetaldehyde dehydrogenase to products that enter the citric cycle.
Alcohol metabolism by alcohol dehydrogenase follows first order kinetics in the smallest doses. Once the blood concentration exceeds about 10 mg/100 ml, the enzymatic processes are saturated and elimination rate no longer increases with increasing
concentration but become steady at 10-15 ml/ 1 hr. in occasional drinkers.
Thus alcohol is subject to dose dependant kinetics i.e. saturation or zero order kinetics.
Actions
- Ethanol acts on CNS in a manner similar to volatile anesthetic.
- It also enhances GABA so stimulating flux of chloride ions through ion channels.
- Other possible mode of action involve inhibition of Ca-channels and inhibition of excitatory NMDA receptors.
- Ethanol has non selective CNS depressant activity.
- It causes cutaneous vasodilatation, tachycardia and myocardial depression
Inhalational Anesthetics
The depth of general anesthesia is directly proportional to the partial pressure of the anesthetic agent in the brain. These agents enter the body through the lungs, dissolve in alveolar blood and are transported to the brain and other tissues.
A. Rate of induction and rate of recovery from anesthesia:
1. The more soluble the agent is in blood, the more drug it takes to saturate the blood and the more time it takes to raise the partial pressure and the depth of anesthesia.
2. The less soluble the agent is in blood, the less drug it takes to saturate the blood and the less time it takes to raise the partial pressure and depth of anesthesia.
B. MAC (minimum alveolar concentration)
The MAC is the concentration of the anesthetic agent that represents the ED50 for these agents. It is the alveolar concentration in which 50% of the patients will respond to a surgical incision.
The lower the MAC the more potent the general anesthetic agent.
C. Inhalation Anesthetic Agents
- Nitrous Oxide
- Ether
- Halothane
- Enflurane
- Isoflurane
Sympathomimetics
Beta-Adrenergic Agonists
Beta1-adrenergic agonists (dopamine, dobutamine, prenalterol, xamoterol) have been used to treat acute and chronic heart failure, but have limited usefulness in chronic CHF because of their arrhythmogenic effects, short duration of action, the development of tolerance, and necessity of parenteral administration
Dopamine (i.v.) is used in acute heart failure (cardiogenic shock) to increase blood pressure and increase cardiac output
- It has a short half-life (1 min)
- At high doses dopamine has potent peripheral vasoconstrictor effects (alpha-receptor stimulation), in addition to its inotropic effects
- Low dose dopamine has a renal artery dilating effect and may improve sodium and water excretion in patients refractory to loop diuretics
- When systolic pressure is greater than 90 mm Hg, nitroprusside can be added to reduce ventricular filling pressure and reduce afterload
- i.v. furosemide should also be administered to reduce edema
Levodopa and ibopamine, analogs of dopamine that can be administered orally, have been shown to improve symptoms in some patients, but can exhibit arrhythmogenic side-effects and tachyphylaxis
Dobutamine is a somewhat selective beta1-adrenergic agonist that lacks vasoconstrictor activity and causes minimal changes in heart rate
- It is frequently added to nitroprusside when blood pressure is adequate to increase cardiac output
- It is administered as an i.v. infusion to treat acute severe heart failure
- It has a short half-life (2.4 min) and is only used on a short-term basis, although long-term beneficial effects on cardiac function have been noted
- After 72 hours of therapy, tolerance can develop to dobutamine necessitating switch to other inotropic support (e.g. milrinone)
- Dobutamine can enhance AV conduction and worsen atrial tachycardia
Prenalterol and xamoterol are partial beta1-adrenergic agonists that may simultaneously stimulate beta1-receptors and block the receptors from stimulation by endogenous catecholamines, thereby protecting against beta1-receptor down-regulation
Methicillin
Methicillin is an antibiotic related to penicillin and other beta-lactam containing antibiotics. It is often used to treat infections caused by bacteria carrying an antibiotic resistance, e.g., staphylococci. As methicillin is deactivated by gastric acid, it has to be administered by injection.
Uses Methicillin serves a purpose in the laboratory to determine antibiotic sensitivity in microbiological culture.