NEET MDS Lessons
Pharmacology
A. Sympathetic Nervous System Depressants
1. Antagonists
Both α-adrenoceptor antagonists and β-adrenoceptor antagonists are useful antihypertensives.
- α-blocker Prazosin, phentolamine, phenoxybenzamine
- β-blocker Propranolol ,Metoprolol, atenolol
- α/β-blocker labetalol
2. Sympathetic depressants
a. Examples of peripherally acting agents include
- reserpine This agent interferes with the storage of norepinephrine
- quanethidine This agent interferes with the release of norepinephrine
- trimethaphan This agent blocks transmission through autonomic ganglia.
b. Examples of Centrally acting agents include
- alphamethyldopa
- clonidine. These agents act by decreasing the number of impresses along sympathetic nerves.
Adverse Effect
include nasal congestion, postural hypotension, diarrhea, sexual dysfunction, dry mouth. sedation and drowsiness.
B. Directly Acting Vasodilators
Act on vascular smooth muscle cells independently of adrenergic nerves and adrenergic receptors.
Relaxation of vascular smooth muscle which leads to a decrease in peripheral vascular resistance.
Sites of action of vasodilators are many. For example
Calcium Channel Blocker’s MOA
. Decrease automaticity & conduction thru SA & AV nodes
. Decreased myocardial contractility
. Decreased peripheral & coronary
smooth muscle tone = decrease SVR
Potassium channels activators
minoxidil, cause vasodilation by activating potassium channels in vascular smooth muscle.
An increase in potassium conductance results in hyperpolarization of the cell membrane which is associated with relaxation of smooth muscle.
Nitrovasodilators, such as sodium nitroprusside,
Increase in intracellular cGMP. cGMP in turn activates a protein kinase. Directly-Acting Vasodilators are on occasion used alone but more frequently are used in combination with antihypertensive agents from other classes (esp. a β-blocker and a diuretic.)
Local Anesthetics
1. Procaine (Novocaine)
a) Classic Ester type agent, first synthetic injectable local anesthetic.
b) Slow onset and short duration of action
2. Tetracaine (Pontocaine)
a) Ester type agent--ten times as potent and toxic as procaine.
b) Slow onset but long duration of action.
c) Available in injectable and topical applications.
3. Propoxycaine (Ravocaine)
a) Ester type agent–five times as potent and toxic as procaine.
b) Often combined with procaine to increase duration of action.
4. Lidocaine (Xylocaine)
a) Versatile widely used amide type agent.
b) Two - three times as potent and toxic as procaine.
c) Rapid onset and relatively long duration of action.
d) Good agent for topical application.
5. Mepivacaine (Carbocaine)
a) Amide type agent similar to lidocaine.
b) Without vasoconstrictor has only short duration of action.
6. Prilocaine (Citanest)
a) Amide type agent — less potent than lidocaine.
b) Without vasoconstrictor has only short duration of action.
c) Metabolized to o-toluidine which can cause methemoglobinemia — significant only with large doses of prilocaine.
d) Higher incidences of paresthesia reported with 4 % preparation
7. Bupivacaine (Marcaine)
a) Amide type agent of high potency and toxicity.
b) Rapid onset and very long duration of action even without vasoconstrictor.
8. Articaine (Septocaine)
a) Amide type agent
b) Only amide-type local anesthetic that contains an ester group, therefore metabolized both in the liver and plasma.
c) Approved by the FDA in 2000
d) Evidence points to improved diffusion through hard and soft tissues as compared to other local anesthetics.
e) Reports of a higher incidence of paresthesia, presumably due to the 4% concentration
f) Not recommended for use in children under 4 years of age
Methods of general anesthesia
CIRCLE SYSTEM
*HIGH-FLOW
FRESH GAS FLOW > 3 l/min.
*LOW-FLOW
FGF ok. 1l/min.
*MINIMAL-FLOW
FGF ok. 0,5 l/min.
Antihypertensives Drugs
CATEGORIES
I. Diuretics to reduce blood volume
Chlorothiazide (Diuril)
II. Drugs that interfere with the Renin-Angiotensin System
A. Converting enzyme inhibitors Captopril , enalapril, Lisinopril
B. Angiotensin receptor antagonists Saralasin Losartan
III. Decrease peripheral vascular resistance and/or cardiac output
A. Directly acting vasodilators
1. calcium channel blockers Nifedipine , Diltiazem, amlodipine
2. potassium channel activators Minoxidil
3. elevation of cGMP Nitroprusside
4. others Hydralazin e
B. Sympathetic nervous system depressants
1. α-blockers Prazosin, phentolamine, phenoxybenzamine
2. β-blockers Propranolol ,Metoprolol, atenolol
3. norepinephrine synthesis inhibitors Metyrosine
4. norepinephrine storage inhibitors Reserpine
5. transmitter release inhibitors Guanethidine
6. centrally acting: decrease
sympathetic outflow Clonidine , methyldopa
RENIN-ANGIOTENSIN SYSTEM INHIBITORS
The actions of Angiotensin II include an increase in blood pressure and a stimulation of the secretion of aldosterone (a hormone from the adrenal cortex) that promotes sodium retention. By preventing the formation of angiotensin II, blood pressure will be reduced. This is the strategy for development of inhibitors. Useful inhibitors of the renin-angiotensin system are the Angiotensin Converting Enzyme Inhibitors
First line treatment for: Hypertension , Congestive heart failure [CHF]
ACE-Inhibitor’s MOA (Angiotensin Converting Enzyme Inhibitors)
Renin-Angiotensin Aldosterone System:
. Renin & Angiotensin = vasoconstrictor
. constricts blood vessels & increases BP
. increases SVR or afterload
. ACE Inhibitors blocks these effects decreasing SVR & afterload
. Aldosterone = secreted from adrenal glands
. cause sodium & water reabsorption
. increase blood volume
. increase preload
. ACE I blocks this and decreases preload
Types
Class I: captopril
Class II (prodrug) : e.g., ramipril, enalapril, perindopril
Class III ( water soluble) : lisinopril.
Mechanism of Action
Inhibition of circulating and tissue angiotensin- converting enzyme.
Increased formation of bradykinin and vasodilatory prostaglandins.
Decreased secretion of aldosterone; help sodium excretion.
Advantages
- Reduction of cardiovascular morbidity and mortality in patients with atherosclerotic vascular disease, diabetes, and heart failure.
- Favorable metabolic profile.
- Improvement in glucose tolerance and insulin resistance.
- Renal glomerular protection effect especially in diabetes mellitus.
- Do not adversely affect quality of life.
Indications
- Diabetes mellitus, particularly with nephropathy.
- Congestive heart failure.
- Following myocardial infraction.
Side Effects
- Cough (10 - 30%): a dry irritant cough with tickling sensation in the throat.
- Skin rash (6%).
- Postural hypotension in salt depleted or blood volume depleted patients.
- Angioedema (0.2%) : life threatening.
- Renal failure: rare, high risk with bilateral renal artery stenosis.
- Hyperkalaemia
- Teratogenicity.
Considerations
- Contraindications include bilateral renal artery stenosis, pregnancy, known allergy, and hyperkalaemia.
- High serum creatinine (> 3 mg/dl) is an indication for careful monitoring of renal function, and potassium. Benefits can still be obtained in spite of renal insufficiency.
- A slight stable increase in serum creatinine after the introduction of ACE inhibitors does not limit use.
- ACE-I are more effective when combined with diuretics and moderate salt restriction.
ACE inhibitors drugs
Captopril 50-150 mg
Enalapril 2.5-40 mg
Lisinopril 10-40 mg
Ramipril 2.5-20 mg
Perindopril 2-8 mg
Angiotensin Receptor Blocker
Losartan 25-100 mg
Candesartan 4-32 mg
Telmisartan 20-80 mg
Mechanism of action
They act by blocking type I angiotensin II receptors generally, producing more blockade of the renin -angiotensin - aldosterone axis.
Advantages
• Similar metabolic profile to that of ACE-I.
• Renal protection.
• They do not produce cough.
Indications
Patients with a compelling indication for ACE-I and who can not tolerate them because of cough or allergic reactions.
ANTIDEPRESSANTS
Monoamine uptake inhibitors
1. Tricyclic antidepressants (TCAs)
2. Selective serotonin reuptake inhibitors (SSRIs)
3. Serotonin-norepinephrine reuptake inhibitors(SNRIs)
4. Norepinephrine reuptake inhibitor
Monoamine oxidase inhibitors (MAOIs)
Monoamine receptor antagonists
BETA-LACTAM ANTIBIOTICS
β-lactam antibiotics are a broad class of antibiotics including penicillin derivatives, cephalosporins, monobactams, carbapenems and β-lactamase inhibitors; basically any antibiotic agent which contains a β-lactam nucleus in its molecular structure. They are the most widely used group of antibiotics available.
Mode of action All β-lactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls.β-lactam antibiotics were mainly active only against Gram-positive bacteria, the development of broad-spectrum β-lactam antibiotics active against various Gram-negative organisms has increased the usefulness of the β-lactam antibiotics.
Common β-lactam antibiotics
Penicillins
Narrow spectrum penicillins:
benzathine penicillin
benzylpenicillin (penicillin G)
phenoxymethylpenicillin (penicillin V)
procaine penicillin
Narrow spectrum penicillinase-resistant penicillins
methicillin
dicloxacillin
flucloxacillin
Moderate spectrum penicillins :
amoxicillin, ampicillin
Broad spectrum penicillins :
co-amoxiclav (amoxycillin+clavulanic acid)
Extended Spectrum Penicillins:
piperacillin
ticarcillin
azlocillin
carbenicillin