NEET MDS Lessons
Pharmacology
Classification
I) Esters
1. Formed from an aromatic acid and an amino alcohol.
2. Examples of ester type local anesthetics:
Procaine
Chloroprocaine
Tetracaine
Cocaine
Benzocaine- topical applications only
2) Amides
1. Formed from an aromatic amine and an amino acid.
2. Examples of amide type local anesthetics:
Articaine
Mepivacaine
Bupivacaine
Prilocaine
Etidocaine
Ropivacaine
Lidocaine
PHARMACOLOGY OF LOCAL ANESTHETICS
Characteristics
1. Block axon conduction (nerve impulse) when applied locally in appropriate concentrations.
2. Local anesthetic action must be completely reversible; however, the duration of the anesthetic block should be of sufficient length to allow completion of the planned treatment.
3. Produce minimal local toxic effects such as nerve and muscle damage as well as minimal systemic toxic effects of organ systems such as the cardiovascular and central nervous system.
Chloral hydrate
1. Short-acting sleep inducer—less risk of “hangover” effect the next day.
2. Little change on REM sleep.
3. Metabolized to trichloroethanol, an active metabolite; further metabolism inactivates the drug.
4. Used for conscious sedation in dentistry.
5. Can result in serious toxicity if the dose is not controlled.
Erythromycin
used for people who have an allergy to penicillins. For respiratory tract infections, it has better coverage of atypical organisms, including mycoplasma. It is also used to treat outbreaks of chlamydia, syphilis, and gonorrhea.
Erythromycin is produced from a strain of the actinomyces Saccaropolyspora erythraea, formerly known as Streptomyces erythraeus.
Mechanism of action Erythromycin prevents bacteria from growing, by interfering with their protein synthesis. Erythromycin binds to the subunit 50S of the bacterial ribosome, and thus inhibits the translocation of peptides.
Erythromycin is easily inactivated by gastric acids, therefore all orally administered formulations are given as either enteric coated or as more stable salts or esters. Erythromycin is very rapidly absorbed, and diffused into most tissues and phagocytes. Due to the high concentration in phagocytes, erythromycin is actively transported to the site of infection, where during active phagocytosis, large concentrations of erythromycin are released.
Most of erythromycin is metabolised by demethylation in the liver. Its main route elimination route is in the bile, and a small portion in the urine.
Erythromycin's half-life is 1.5 hours.
Side-effects. More serious side-effects, such as reversible deafness are rare. Cholestatic jaundice, Stevens-Johnson syndrome and toxic epidermal necrosis are some other rare side effects that may occur.
Contraindications Earlier case reports on sudden death prompted a study on a large cohort that confirmed a link between erythromycin, ventricular tachycardia and sudden cardiac death in patients also taking drugs that prolong the metabolism of erythromycin (like verapamil or diltiazem)
erythromycin should not be administered in patients using these drugs, or drugs that also prolong the QT time.
First Generation Cephalosporins
Prototype Drugs are CEFAZOLIN (for IV use) and CEPHALEXIN (oral use).
1. Staph. aureus - excellent activity against b-lactamase-producing strains
Not effective against methicillin-resistant Staph. aureus & epidermidis
2. Streptococci - excellent activity versus Streptococcus sp.
Not effective against penicillin-resistant Strep. pneumoniae
3. Other Gm + bacteria - excellent activity except for Enterococcus sp.
4. Moderate activity against gram negative bacteria.
Caution: resistance may occur in all cases.
Susceptible organisms include:
E. coli
Proteus mirabilis
Indole + Proteus sp. (many strains resistant)
Haemophilus influenzae (some strains resistant)
Neisseria sp. (some gonococci resistant)
Uses
1. Upper respiratory tract infections due to Staph. and Strep.
2. Lower respiratory tract infections due to susceptible bacteria e.g. Strep.pneumoniae in penicillin-allergic patient (previous rash)
3. Uncomplicated urinary tract infections (Cephalexin)
4. Surgical prophylaxis for orthopedic and cardiovascular operations (cefazolin preferred because of longer half-life)
5. Staphylococcal infections of skin and skin structure
Methadone
Pharmacology and analgesic potency similar to morphine.
- Very effective following oral administration.
- Longer duration of action than morphine due to plasma protein binding (t1/2 approximately 25 hrs).
- Used in methadone maintenance programs for drug addicts and for opiate withdrawal. Opiate withdrawal is more prolonged but is less intense than it is following morphine or heroin.
Anesthesia agents
1. Inhalation anesthetics (volatile anesthetics)
- gases : N2O, xenon
- Fluids (vaporisers)
2. Intravenous anesthetics
- Barbiturans : thiopental
- Others : propofol, etomidat
3. Pain killers
- Opioids: fentanyl, sufentanil, alfentanil, remifentanil, morphine
- Non Steroid Anti Inflamatory Drugs: ketonal, paracetamol
4. Relaxants
- Depolarising : succinilcholine
- Non depolarising : atracurium, cisatracurium, vecuronium, rocuronium
5. adiuvants
-benzodiazepins: midasolam, diazepam