Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Classification Based on

a. Chemical structure

I. Sulphonamidcs.and others - c.g.. sulphadiazine. etc.

2. Beta-lactum ring - e.g.. penicillin

3. Tetracycline - e.g.. Oxytetracycline,.doxycycline.etc.

b. Mechanism of action

1. Inhibits cell-wall synthesis - penicillin. cephalosporin..cycloserine. etc.

2. Cause leakage from cell-membrane – polypeptides (polymyxin,  Bacitracin), polyenes (Nystatin)

3. Inhibit protein synthesis - tetracyclines. chloramphenicols. erythromycin.

4. Cause mis-reading of mRNA code - aminoglycosides

5. Interfere with DNA function - refampicin.. metronidazole

6. Interfere with intermediary metabolism - sulphonamides. ethambutole

c. Type of organism against which it is primarily activate

I. Antibacterial - penicillin.

2. Antifungal - nystatin.

 

d. Spectrum of activity

1. Broad spectrum - tetracylines .

2. Narrow spectrum - penicillin G (penG). streptomycin.erythromycin

e. Type of action

I. Bacteriostatic - sulphonamides, erythromycin.tertracyclines

2. Bacteriocidal - penicillin. aminoglycoside

f. Source

I. Fungi - penicillin. cephalosporins

2. Bacteria - Polymyxin B

Warfarin (Coumadin):

  • The most common oral anticoagulant.
  • It is only active in vivo.
  • Warfarin is almost completely bound to plasma proteins. -96% to 98% bound.
  • Warfarin is metabolized by the liver and excreted in the urine.
  • Coumarin anticoagulants pass the placental barrier and are secreted into the maternal milk.
  • Newborn infants are more sensitive to oral anticoagulants than are adults because of lower vitamin K levels and lower rates of metabolism.
  • Bleeding is the most common side effect and occurs most often from the mucous membranes of the gastrointestinal tract and the genitourinary tract.

Oral anticoagulants are contraindicated in:

• Conditions where active bleeding must be avoided, Vitamin K deficiency and severe

hepatic or renal disease, and where intensive salicylate therapy is required.

Dissociation constants

Local anesthetic

pKa

% of base(RN) at pH 7.4

onset of action(min)

Lidocaine

7.8

29

2-4

Bupivacaine

8.1

17

5-8

Mepivacaine

7.7

33

2-4

Prilocaine

7.9

25

2-4

Articaine

7.8

29

2-4

Procaine

9.1

2

14-18

Benzocaine

3.5

100

-

Agonist, Antagonist, and Partial Agonists

Agonists:  molecules that activate receptors.  A drug that mimics the body's own regulatory processes.
Antagonists:  produce their effects by preventing receptors activation by endogenous regulatory molecules and drugs.  Block activation of receptors by agonists.
Noncompetive Antagonist:  Bind irreversibly to receptors, and reduce the maximal response that an agonist can elicit.
Competitive Antagonist:  Bind reversibly to receptors, competing with agonists for binding sites.
Partial Agonists:  Have moderate intrinsic activity, the maximal effect that a partial agonist can produce is lower than that of a full agonist.  Act as antagonists as well as agonists.
 

Azithromycin

Azithromycin is the first macrolide antibiotic belonging to the azalide group. Azithromycin is derived from erythromycin by adding a nitrogen atom into the lactone ring of erythromycin A, thus making lactone ring 15-membered.

Azithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Hemophilus influenzae.

azithromycin is acid-stable and can therefore be taken orally without being protected from gastric acids.

Main elimination route is through excretion in to the biliary fluid, and some can also be eliminated through urinary excretion

 Sympathomimetics

Beta-Adrenergic Agonists

Beta1-adrenergic agonists (dopamine, dobutamine, prenalterol, xamoterol) have been used to treat acute and chronic heart failure, but have limited usefulness in chronic CHF because of their arrhythmogenic effects, short duration of action, the development of tolerance, and necessity of parenteral administration

Dopamine (i.v.) is used in acute heart failure (cardiogenic shock) to increase blood pressure and increase cardiac output

  • It has a short half-life (1 min)
  • At high doses dopamine has potent peripheral vasoconstrictor effects (alpha-receptor stimulation), in addition to its inotropic effects
  • Low dose dopamine has a renal artery dilating effect and may improve sodium and water excretion in patients refractory to loop diuretics
  • When systolic pressure is greater than 90 mm Hg, nitroprusside can be added to reduce ventricular filling pressure and reduce afterload
  • i.v. furosemide should also be administered to reduce edema

Levodopa and ibopamine, analogs of dopamine that can be administered orally, have been shown to improve symptoms in some patients, but can exhibit arrhythmogenic side-effects and tachyphylaxis

Dobutamine is a somewhat selective beta1-adrenergic agonist that lacks vasoconstrictor activity and causes minimal changes in heart rate

  • It is frequently added to nitroprusside when blood pressure is adequate to increase cardiac output
  • It is administered as an i.v. infusion to treat acute severe heart failure
  • It has a short half-life (2.4 min) and is only used on a short-term basis, although long-term beneficial effects on cardiac function have been noted
  • After 72 hours of therapy, tolerance can develop to dobutamine necessitating switch to other inotropic support (e.g. milrinone)
  • Dobutamine can enhance AV conduction and worsen atrial tachycardia

Prenalterol and xamoterol are partial beta1-adrenergic agonists that may simultaneously stimulate beta1-receptors and block the receptors from stimulation by endogenous catecholamines, thereby protecting against beta1-receptor down-regulation

Loop (High Ceiling) Diuretics

Loop diuretics are diuretics that act at the ascending limb of the loop of Henle in the kidney. They are primarily used in medicine to treat hypertension and edema often due to congestive heart failure or renal insufficiency. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

Agent: Furosemide

Mechanism(s) of Action

1.    Diuretic effect is produced by inhibit of active 1 Na+, 1 K+, 2 Cl-  co-transport (ascending limb - Loop of Henle). 
o    This produces potent diuresis as this is a relatively important Na re-absorption site.

2.    Potassium wasting effect 

a.    Blood volume reduction leads to increased production of aldosterone 
b.    Increased distal Na load secondary to diuretic effect 
c.    a + b = increase Na (to blood) for K (to urine) exchange which produces indirect K wasting (same as thiazides but more likely)

3.    Increased calcium clearance/decreased plasma calcium 

o    secondary to passive decreases in loop Ca++ reabsorption.
o    This is linked to inhibition of Cl- reabsorption.
o    This is an important clinical effect in patients with ABNORMAL High Ca++
 

Explore by Exams