NEET MDS Lessons
Pharmacology
PHARYNGEAL DEMULCENTS
Administered in the form of lozenges, cough drops and cough linctus.
Produce soothing action on throat directly and by increasing the flow of saliva and provide symptomatic relief from dry cough.
EXPECTORANT
Expectorants are the drugs which increase the production of bronchial secretion and reduce its viscosity to facilitate its removal by coughing.
ANTITUSSIVES
They are central cough suppressants and act centrally to raise the threshold of cough centre and inhibit the cough reflex by suppressing the coordinating cough centre in the medulla oblongata.
Codeine - it depresses cough centre but is less constipating and abuse liability is low.
Pholcodeine is similar to codeine in efficacy and is longer acting. It has no analgesic or addicting property.
Noscapine is another opium alkaloid of benzylisoquinoline group. It is used as antitussive with no analgesic and drug abuse or drug dependence property.
Dextromethorphan is a synthetic compound and its dextroisomer is used as antitussive and is as effective as codeine
Pipazethate is another synthetic compound of phenothiazine category used as antitussive with little analgesic and sedative properties.
ANTIHISTAMINICS
They do not act on cough centre but provide relief due to their sedative and anticholinergic action.
BRONCHODILATORS
Bronchodilators are helpful in individuals with cough and bronchoconstriction due to bronchial hyperreactivity. They help by improving the effectiveness of cough in clearing secretions.
Anti-Histamines:
The effect of histamine can be opposed in three ways:
1. Physiological antagonism: by using a drug to oppose the effect (e.g adrenaline). Histamine constricts bronchi,
causes vasodilatation which increases capillary permeability. Adrenaline opposes this effect by a mechanism unrelated to histamine.
2. By preventing histamine from reaching its site of action (receptors), By competition with H1-H2 receptors (Drug antagonisms).
3. By preventing the release of histamine. (adrenal steroids and sodium-cromoglycate can suppress the effect on the tissues)
Types of Anti-histamine drugs
Selected H1 antagonist drugs
First-generation H1 receptor antagonists:
Chlorpheniramine (Histadin) & Dexchlorpheniramine
Diphenhydramine (Allermine)
Promethazine (Phenergan) - strong CNS depressants
Cyproheptadine (Periactin)
ACTION
These drugs bind to both central and peripheral H1 receptors and can cause CNS depression or stimulation.
- They usually cause CNS depression (drowsiness,sedation) with usual therapeutic doses
- Cause CNS stimulation (anxiety, agitation)
with excessive doses, especially in children.
They also have Anticholinergic effects (e.g. dry mouth, urinary retention, constipation, blurred vision).
Second-generation H1 receptor antagonists (non-sedating) agents
Terfenadine
Fexofenadine
Loratadine
Acravistine and Cetirizine
Astemizol
Action
They cause less CNS epression because they are selective for peripheral H1 receptors and do not cross the blood brain barrier.
Indications for use
The drugs can relieve symptoms but don’t relieve hypersensitivity.
1) Allergic rhinitis. Some relief of sneezing, rhinorrhea, nasal airway obstruction and conjunctivitis are with the use of antihistamine.
2) Anaphylaxis. Antihistamine is helpful in treating urticaria and pruritus.
3) Allergic conjunctivitis. This condition, which is characterized by redness, itching and tearing of the eyes.
4) Drug allergies. Antihistamines may be given to prevent or treat reactions to drugs (e.g, before a dignostic test that
uses an iodine preparation).
5) Transfusions of blood and blood products.
6) Dermatologic conditions. Antihistamines are the drug of choice for treatment of allergic contact dermatitis and
acute Urticaria. Urticaria often occurs because the skin has many mast cells to release histamine.
7) Miscellaneous. Some antihistamines are commonly used for non-allergic disorder such as motion sickness, nausea, vomiting, sleep, cough or add to cough mixtures.
Contraindication
hypersensitivity to the drugs, narrow-angle glaucoma, prostatic hypertroph, stenosing peptic ulcer, bladder neck obstruction, during pregnancy and lactating women
Adverse effects:
Drowsiness and sedation
Anticholinergic
Some antihistamines may cause dizziness, fatigue, hypotention, headache, epigastric distress and photosensitivity
Serious adverse reaction including cardiac arrest & death, have been reported in patients receiving high dose astemizole
H2-receptor antagonists
Cimetidine (Tagamate), Ranitidine (Zantac), Fomatidine, Nizatidine.
Mechanism of action
Numerous factors influence acid secretion by the stomach, including food, physiological condition and drugs. H2 receptor blockers reduce basal acid-secretion by about 95% and food stimulated acid-secretion by about 70%. Both conc. and vol. of H ions will decrease.
Pharmacokinetics:
1) They are all well absorbed after oral dose.
2) Antacids decrease their absorption in about 10-20%
Uses
Cimetidine - reduction of gastric secretion is beneficial, these are in main duodenal ulcer, benign gastric ulcer, stomach ulcer and reflux eosophagitis.
Rantidine -used as alternative for duodenal ulcer
Adverse effects:
headache, dizziness, constipation, diarrhoea, tiredness and muscular pain.
Anticonvulsants: include carbamazepine (use when lithium not tolerated; may not be as effective) .
valproic acid (use when lithium not tolerated; rapid onset)
DIURETICS
The basis for the use of diuretics is to promote sodium depletion (and thereby water) which leads to a decrease in extracellular fluid volume.
An important aspect of diuretic therapy is to prevent the development of tolerance to other antihypertensive drugs.
TYPES OF DIURETICS
A. Thiazide Diuretics examples include chlorothiazide
hydrochlorothiazide
a concern with these drugs is the loss of potassium as well as sodium
B. Loop Diuretics (High Ceiling Diuretics) examples include
furosemide (Lasix)
bumetanide
these compounds produce a powerful diuresis and are capable of producing severe derangements of electrolyte balance
C. Potassium Sparing Diuretics examples include
triamterene
amiloride
spironolactone
unlike the other diuretics, these agents do not cause loss of potassium
Mechanism of Action
Initial effects: through reduction of plasma volume and cardiac output.
Long term effect: through decrease in total peripheral vascular resistance.
Advantages
Documented reduction in cardiovascular morbidity and mortality.
Least expensive antihypertensive drugs.
Best drug for treatment of systolic hypertension and for hypertension in theelderly.
Can be combined with all other antihypertensive drugs to produce synergetic effect.
Side Effects
Metabolic effects (uncommon with small doses): hypokalemia,hypomagnesemia, hyponatremia, hyperuricemia, dyslipidemia (increased total
and LDL cholesterol), impaired glucose tolerance, and hypercalcemia (with thiazides).
Postural hypotension.
Impotence in up to 22% of patients.
Considerations
- Moderate salt restriction is the key for effective antihypertensive effect of diuretics and for protection from diuretic - induced hypokalaemia.
- Thiazides are not effective in patients with renal failure (serum creatinine > 2mg /dl) because of reduced glomerular filtration rate.
- Frusemide needs frequent doses ( 2-3 /day ).Thiazides can be given once daily or every other day.
- Potassium supplements should not be routinely combined with thiazide or loop diuretics. They are indicated with hypokalemia (serum potassium < 3.5 mEq/L) especially with concomitant digitalis therapy or left ventricular hypertrophy.
- Nonsteroidal antiinflammatory drugs can antagonize diuretics effectiveness.
Special Indications
Diuretics should be the primary choice in all hypertensives.
They are indicated in:
- Volume dependent forms of hypertension: blacks, elderly, diabetic, renal and obese hypertensives.
- Hypertension complicated with heart failure.
- Resistant hypertension: loop diuretics in large doses are recommended.
- Renal impairment: loop diuretics
Estimation of the risk of anesthesia (American Society of Anesthesiologists scale)
• ASA 1: healthy patient.
• ASA 2: patient with stable, treated illness like arterial hypertension, diabetes melitus, asthma bronchiale, obesity
• ASA 3: patient with systemic illness decreasing sufficiency like heart illness, late infarct
• ASA 4: patient with serious illness influencing his state like renal insuficiency, unstable hypertension, circulatory insuficiency
• ASA 5: patient in life treatening illness
• ASA 6: brain death- potential organ donor
Methicillin
Methicillin is an antibiotic related to penicillin and other beta-lactam containing antibiotics. It is often used to treat infections caused by bacteria carrying an antibiotic resistance, e.g., staphylococci. As methicillin is deactivated by gastric acid, it has to be administered by injection.
Uses Methicillin serves a purpose in the laboratory to determine antibiotic sensitivity in microbiological culture.
Streptomycin
Streptomycin was the first of a class of drugs called aminoglycosides to be discovered, and was the first antibiotic remedy for tuberculosis. It is derived from the actinobacterium Streptomyces griseus.
Streptomycin cannot be given orally, but must be administered by regular intramuscular injection.