NEET MDS Lessons
Pharmacology
Propofol -Intravenous Anesthetics
- A nonbarbiturate anesthetic
- It is very lipid-soluble, acts rapidly and has a short recovery time.
- It is associated with less nausea and vomiting than some of the other IV anesthetics.
- Propofol is very similar to thiopental in its effects on the cardiorespiratory system.
- It does not have any analgesic properties but lowers the dose of opioid needed when the two agents are used in combination.
- The most significant adverse cardiovascular effect associated with propofol administration is hypotension. It should be used with caution in patients with cardiac disease.
Megltinides
nateglinide
repaglinide
Mechanism
binds to K+ channels on β-cells → postprandial insulin release
Clinical use
type 2 diabetes mellitus
may be used as monotherapy, or in combination with metformin
Antifungal
There are several classes of antifungal drugs.
The polyenes bind with sterols in the fungal cell wall, principally ergosterol. This causes the cell's contents to leak out and the cell dies. Human (and other animal) cells contain cholesterol rather than ergosterol so are much less suceptible.
Nystatin
Amphotericin B
Natamycin
The imidazole and triazole groups of antifungal drugs inhibit the enzyme cytochrome P450 14α-demethylase. This enzyme converts lanosterol to ergosterol, and is required in fungal cell wall synthesis. These drugs also block steroid synthesis in humans.
Imidazoles:
Miconazole
Ketoconazole
Clotrimazole
The triazoles are newer, and are less toxic and more effective:
Fluconazole
Itraconazole
Allylamines inhibit the enzyme squalene epoxidase, another enzyme required for ergosterol synthesis:
Terbinafine
Echinocandins inhibit the synthesis of glucan in the cell wall, probably via the enzyme 1,3-β glucan synthase:
Caspofungin
Micafungin
Others:
Flucytosine is an antimetabolite.
Griseofulvin binds to polymerized microtubules and inhibits fungal mitosis.
Factors affecting onset and duration of action of local anesthetics
pH of tissue
pKa of drug
Time of diffusion from needle tip to nerve
Time of diffusion away from nerve
Nerve morphology
Concentration of drug
Lipid solubility of drug
Sympatholytics (Antiadrenergic Agents)
PHENOXYBENZAMINE
It is a potent alpha-adrenergic blocking agent
It effectively prevents the responses mediated by alpha receptors and diastolic blood pressure tends to decrease.
It interferes with the reflex adjustment of blood pressure and produces postural hypotension.
It increases the cardiac output and decreases the total peripheral resistance.
It is used in the management of pheochromocytoma and also to treat peripheral vasospastic conditions e.g. Raynaud’s disease and shock syndrome.
Phentolamine, another alpha blocker is exclusively used for the diagnosis of pheochromocytoma and for the prevention of abrupt rise in blood pressure during surgical removal of adrenal medulla tumors.
ERGOT ALKALOIDS
Ergotamine is an important alkaloid that possesses both vasoconstrictor and alpha-receptor blocking activity. Both ergotamine and dihydroergotamine are used in the treatment of migraine.
METHYSERGIDE
It is a 5-hydroxytryptamine antagonist ). It is effective in preventing an attack of migraine.
SUMATRIPTAN
It is a potent selective 5-HT 1D receptor agonist used in the treatment of migraine.
PRAZOSIN
It is an piperazinyl quinazoline effective in the management of hypertension. It is highly selective for α1 receptors. It also reduces the venous return and cardiac output. It is used in essential hypertension, benign prostatic hypertrophy and in Raynaud’s syndrome.
Prazosin lowers blood pressure in human beings by relaxing both veins and resistance vessels but it dilates arterioles more than veins.
TERAZOSIN
It is similar to prazosin but has higher bioavailability and longer plasma t½
DOXAZOSIN
It is another potent and selective α1 adrenoceptor antagonist and quinazoline derivative.
It’s antihypertensive effect is produced by a reduction in smooth muscle tone of peripheral vascular beds.
TAMSULOSIN
It is uroselective α1A blocker and has been found effective in improving BPH symptoms.
Other drugs used for erectile dysfunction
Sildenafil: It is orally active selective inhibitor of phosphodiesterase type 5 useful in treatment of erectile dysfunction.
Aminoglycoside
Aminoglycosides are a group of antibiotics that are effective against certain types of bacteria. They include amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, and tobramycin. Those which are derived from Streptomyces species
Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Streptomycin was the first effective drug in the treatment of tuberculosis, though the role of aminoglycosides such as streptomycin and amikacin have been eclipsed (because of their toxicity and inconvenient route of administration) except for multiple drug resistant strains.
Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis.
Because of their potential for ototoxicity and renal toxicity, aminoglycosides are administered in doses based on body weight. Blood drug levels and creatinine are monitored during the course of therapy.
There is no oral form of these antibiotics: they are generally administered intravenously, though some are used in topical preparations used on wounds.
Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses.
Classification
I) Esters
1. Formed from an aromatic acid and an amino alcohol.
2. Examples of ester type local anesthetics:
Procaine
Chloroprocaine
Tetracaine
Cocaine
Benzocaine- topical applications only
2) Amides
1. Formed from an aromatic amine and an amino acid.
2. Examples of amide type local anesthetics:
Articaine
Mepivacaine
Bupivacaine
Prilocaine
Etidocaine
Ropivacaine
Lidocaine