Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Flucloxacillin, important even now for its resistance to beta-lactamases produced by bacteria such as Staphylococcus species. It is still no match for MRSA (Methicillin Resistant Staphylococcus aureus).

The last in the line of true penicillins were the antipseudomonal penicillins, such as ticarcillin, useful for their activity against Gram-negative bacteria

Carbapenems: Broadest spectrum of beta-lactam antibiotics.

imipenem with cilastatin

meropenem

ertapenem

Monobactams: Unlike other beta-lactams, there is no fused ring attached to beta-lactam nucleus. Thus, there is less probability of cross-sensitivity reactions.

aztreonam

Beta-lactamase Inhibitors No antimicrobial activity. Their sole purpose is to prevent the inactivation of beta-lactam antibiotics by beta-lactamases, and as such, they are co-administered with beta-lactam antibiotics.

clavulanic acid

tazobactam

sulbactam

Antiplatelet Drugs:

Whereas the anticoagulant drugs such as Warfarin and Heparin suppress the synthesis or activity of the clotting factors and are used to control venous thromboembolic disorders, the antithrombotic drugs suppress platelet function and are used primarily for arterial thrombotic disease. Platelet plugs form the bulk of arterial thrombi.

Acetylsalicylic acid (Aspirin)

• Inhibits release of ADP by platelets and their aggregation by acetylating the enzymes (cyclooxygenases or COX) of the platelet that synthesize the precursors of Thromboxane A2 that is a labile inducer of platelet aggregation and a potent vasoconstrictor.

• Low dose (160-320 mg) may be more effective in inhibiting Thromboxane A2 than PGI2 which has the opposite effect and is synthesized by the endothelium.

• The effect of aspirin is irreversible.

Propoxyphene

  • A methadone analog.Used orally to relieve mild to moderate pain.
  • A typical opiate, it does not possess anti-inflammatory or antipyretic actions, but has little or no antitussive activity.
  • Cannot be used parenterally because of irritant properties.
  • Has a low addiction potential primarily due to its lack of potency as an opiate.
  • The most common adverse side effects are:• dizziness, drowsiness, and nausea and vomiting. • these effects are more prominent in ambulatory patients.
  • Withdrawal symptoms have occurred in both adults and in neonates following use of the drug by the mother during pregnancy.
  • CNS depression is additive with other CNS depressants.

ANTICHOLINERGIC DRUGS
Blocks the action of Ach on autonomic effectors.

Classification
Natural Alkaloids - Atropine. Hyoscine

Semi-synthetic deriuvatives:- Homatropine, Homatropine methylbromide, Atropine methonitrate.

Synthetic compounds 

(a) Mydriatics - Cyclopentolate. Tropicamide.
(b) Antisecretory - Antispasmodics - Propantha1ine. Oxy-phenonium, Pirenzipine.
c) Antiparkinsonism- Benzotopine, Ethopropazine, Trihexyphenidyl, Procyclidine, Biperiden 
Other drugs with anticholinergic properties • Tricyclic Antidepressants • Phenothiazines • Antihistaminics • Disopyramide

MUSCARINIC RECEPTORS SUBTYPES & ANTAGONISTS 
• M 1 Antagonists – Pirenzepine, Telenzepine, dicyclomine, trihexyphenidyl 
• M 2 Antagonists – Gallamine, methoctramine 
• M 3 Antagonists – Darifenacin, solifenacin, oxybutynin, tolterodine

Pharmacological Actions
CNS - stimulation of medullary centres like vagal. respiratory. vasomotor and inhibition of vestibular excitation and has anti-motion sickness properties.
CVS - tachycardia.
Eye - mydriasis
Smooth muscles - relaxation of the muscles receiving parnsympathetic motor innervation.
Glands - decreased secretion of sweat and salivary glands
Body Temperature - is increased as there is stimulation of  temperature regulating centre.
Respiratory System- Bronchodilatation & decrease in secretions. For COPD or Asthma - antimuscarinic drugs are effective
GIT - Pirenzepine & Telenzepine - decrease gastric secretion with lesser side effects.

SGLT-2 Inhibitors

canagliflozin
empagliflozin

Mechanism

glucose is reabsorbed in the proximal tubule of the nephron by the sodium-glucose cotransporter 2 (SGLT2)
SGLT2-inhibitors lower serum glucose by increasing urinary glucose excretion
the mechanism of action is independent of insulin secretion or action

Clinical use

type II DM

Estimation of the risk of anesthesia (American Society of Anesthesiologists scale)

• ASA 1: healthy patient.

• ASA 2: patient with stable, treated illness like arterial hypertension, diabetes melitus, asthma bronchiale, obesity

• ASA 3: patient with systemic illness decreasing sufficiency like heart illness, late infarct

• ASA 4: patient with serious illness influencing his state like renal insuficiency, unstable hypertension, circulatory insuficiency

• ASA 5: patient in life treatening illness

• ASA 6: brain death- potential organ donor

Explore by Exams