NEET MDS Lessons
Pharmacology
Etomidate -Intravenous Anesthetics
- A nonbarbiturate anesthetic used primarily to induce surgical anesthesia.
- It does not produce analgesia.
- Etomidate has minimal effect on the cardiovascular system and respiration during induction of anesthesia.
- Like the barbiturates, etomidate decreases cerebral blood flow, cerebral metabolic rate and intracranial pressure.
- No changes in hepatic, renal or hematologic function have been reported.
- Myoclonic muscle movements are relatively common.
- Postoperative nausea and vomiting are more common with etomidate than with barbiturates.
Oxytetracycline
Treats Oxytetracycline is a medicine used for treating a wide range of infections including infections of the lungs, urinary system, skin and eyes. It may also be used to treat sexually transmitted infections, infections caused by lice, rickettsial infections, cholera and plague. It is very occasionally used to treat leptospirosis, gas gangrene, and tetanus.
Mechanism of Action
When a local anesthetic is injected, it is the ionized [cation] form of the local anesthetic that actually binds to anionic channel receptors in the sodium channel, thus blocking the influx of sodium ions which are responsible for lowering the -70mv resting potential towards the firing threshold of -55mv which then results in depolarization of the nerve membrane. However, only the lipid soluble nonionized [base] form of the local anesthetic can penetrate the various barriers [e.g., nerve membrane, fibrous tissue] between the site of injection and the targeted destination which is the sodium channel.
Ciclopirox:Ciclopirox is a synthetic antifungal agent for topical dermatologic use.
Other sedatives: carisoprodol, cyclobenzaprine, and methocarbamol are used for muscle relaxation.
Baclofen
1. Used in spasticity states to relax skeletal muscle.
2. Occasionally used in trigeminal neuralgia.
Antihistamines (first-generation H1 receptor blockers)
1. Used for sedation (e.g., diphenhydramine).
Ethyl alcohol
Nitrous Oxide (N2O)
MAC 100%, blood/gas solubility ratio 0.47
- An inorganic gas., low solubility in blood, but greater solubility than N2
- Inflammable, but does support combustion.
- Excreted primarily unchanged through the lungs.
- It provides amnesia and analgesia when administered alone.
- Does not produce muscular relaxation.
- Less depressant to both the cardiovascular system and respiratory system than most of the other inhalational anesthetics.
- Lack of potency and tendency to produce anoxia are its primary limitations.
- The major benefit of nitrous oxide is its ability to reduce the amount of the secondary anesthetic agent that is necessary to reach a specified level of anesthesia.
Macrolide
The macrolides are a group of drugs (typically antibiotics) whose activity stems from the presence of a macrolide ring, a large lactone ring to which one or more deoxy sugars, usually cladinose and desosamine, are attached. The lactone ring can be either 14, 15 or 16-membered. Macrolides belong to the polyketide class of natural products.
The most commonly-prescribed macrolide antibiotics are:
Erythromycin, Clarithromycin, Azithromycin, roxithromycin,
Others are: spiramycin (used for treating toxoplasmosis), ansamycin, oleandomycin, carbomycin and tylocine.
There is also a new class of antibiotics called ketolides that is structurally related to the macrolides. Ketolides such as telithromycin are used to fight respiratory tract infections caused by macrolide-resistant bacteria.
Non-antibiotic macrolides :The drug Tacrolimus, which is used as an
immunosuppressant, is also a macrolide. It has similar activity to cyclosporine.
Uses : respiratory tract infections and soft tissue infections.
Beta-hemolytic streptococci, pneumococci, staphylococci and enterococci are usually susceptible to macrolides. Unlike penicillin, macrolides have shown effective against mycoplasma, mycobacteria, some rickettsia and chlamydia.
Mechanism of action: Inhibition of bacterial protein synthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl-tRNA. This action is mainly bacteriostatic, but can also be bactericidal in high concentrations
Resistance : Bacterial resistance to macrolides occurs by alteration of the structure of the bacterial ribosome.