NEET MDS Lessons
Pharmacology
Sufentanil
- A synthetic opioid related to fentanyl.
- About 7 times more potent than fentanyl.
- Has a slightly more rapid onset of action than fentanyl.
Morphine
Morphine is effective orally, but is much less effective than when given parenterally due to first-pass metabolism in the liver. Metabolism involves glucuronide formation, the product of which is excreted in the urine.
1. Central Nervous System Effects
• Morphine has mixed depressant and stimulatory actions on the CNS.
• Analgesia:
• Dysphoria – Euphoria
- morphine directly stimulates the chemoreceptor trigger zone, but later depresses the vomiting center in the brain stem. This center is outside the blood/brain barrier.
- opiates appear to relieve anxiety
• Morphine causes the release of histamine and abolishes hunger.
- causes the body to feel warm and the face and nose to itch.
• Pupils are constricted.- due to stimulation of the nuclei of the third cranial nerves.
- tolerance does not develop to this effect.
• Cough reflex is inhibited. - this is not a stereospecific effect.
- dextromethorphan will suppress cough but will not produce analgesia.
• Respiration is depressed
- due to a direct effect on the brain stem respiratory center.
- death from narcotic overdose is nearly always due to respiratory arrest.
- the mechanism of respiratory depression involves:
• a reduction in the responsiveness of the brain stem respiratory centers to an increase in pCO2.
• depression of brain stem centers that regulate respiratory rhythm.
- hypoxic stimulation of respiration is less affected and O2 administration can produce apnea.
2. Cardiovascular Effects
• Postural orthostatic hypotension.- due primarily to peripheral vasodilation, which may be due in part to histamine release.
• Cerebral circulation is also indirectly influenced by increased pCO2, which leads to cerebral vasodilation and increased cerebrospinal fluid pressure.
• In congestive heart failure, morphine decreases the left ventricular workload and myocardial oxygen demand.
3. Endocrine Effects
• Increases prolactin secretion
• Increases vasopressin (ADH) secretion
• Decreases pituitary gonadotropin (LH & FSH) secretion.
• Decreases stress induced ACTH secretion.
4. Gastrointestinal Tract Effects
• Constipation (tolerance does not develop to this effect).
• Several of these agents can be used in the treatment of diarrhea.
There is an increase in smooth muscle tone and a decrease in propulsive contractions.
Adverse Reactions
Generally direct extensions of their pharmacological actions.
1. respiratory depression, apnea
2. nausea and vomiting
3. dizziness, orthostatic hypotension, edema
4. mental clouding, drowsiness
5. constipation, ileus
6. biliary spasm (colic)
7. dry mouth
8. urine retention, urinary hesitancy
9. hypersensitivity reactions (contact dermatitis, urticaria)
Precautions
1. respiratory depression, particularly in the newborn
3. orthostatic hypotension
4. histamine release (asthma, shock)
5. drug interactions (other CNS depressants)
6. tolerance:
- analgesia, euphoria, nausea and vomiting, respiratory depression
7. physical dependence (psychological & physiological)
Prostaglandines:
Every cell in the body is capable of synthesizing one or more types of PGS. The four major group of PGs are E, F, A, and B.
Pharmacological actions:
stimulation of cyclicAMP production and calcium use by various cells
CVS
PGE2 acts as vasodilator; it is more potent hypotensive than Ach and histamine
Uterous
PGE2 and PGF2α Contract human uterus
Bronchial muscle
PGF2α and thromboxan A2 cause bronchial muscle contraction.
PGE2 & PGI2 cause bronchial muscle dilatation
GIT: PGE2 and PGF2α cause colic and watery diarrhoea
Platelets
Thromboxan A2 is potent induce of platelets aggregation
Kidney
PGE2 and PGI2 increase water, Na ion and K ion excretion (act as diuresis) that cause renal vasodilatation and inhibit
tubular reabsorption
USE
PGI2: Epoprostenol (inhibits platelets aggregation)
PGE1: Alprostadil (used to maintain the potency of arterioles in neonates with congenital heart defects).
PGE2: Dinoproste (used as pessaries to induce labor)
Synthetic analogue of PGE1: Misoprostol (inhibit the secretion of HCl).
Pharmacodynamics
Pharmacodynamics is the study of what drugs do to the body and how they do it.
Dose-Response Relationships
- Basic Features of the Dose-Response Relationship: The dose-response relationship is graded instead of all-or-nothing (as dose increases, response becomes progressively larger).
- Maximal Efficacy and Relative Potency
- Maximal Efficacy: the largest effects that a drug can produce
- Relative Potency: Potency refers to the amount of drug that must be given to elicit an effect.
- Potency is rarely an important characteristic of a drug.
- Potency of a drug implies nothing about its maximal efficacy.
Thrombolytic Agents:
Tissue Plasminogen Activator (t-PA, Activase)
t-PA is a serine protease. It is a poor plasminogen activator in the absence of fibrin. t-PA binds to fibrin and activates bound plasminogen several hundred-fold more rapidly than it activates plasminogen in the circulation.
Streptokinase (Streptase)
Streptokinase is a protein produced by β-hemolytic streptococci. It has no intrinsic enzymatic activity, but forms a stable noncovalent 1:1 complex with plasminogen. This produces a conformational change that exposes the active site on plasminogen that cleaves a peptide bond on free plasminogen molecules to form free plasmin.
Urokinase (Abbokinase)
Urokinase is isolated from cultured human cells.Like streptokinase, it lacks fibrin specificity and therefore readily induces a systemic lytic state. Like t-PA, Urokinase is very expensive.
Contraindications to Thrombolytic Therapy:
• Surgery within 10 days, including organ biopsy, puncture of noncompressible vessels, serious trauma, cardiopulmonary resuscitation.
• Serious gastrointestinal bleeding within 3 months.
• History of hypertension (diastolic pressure >110 mm Hg).
• Active bleeding or hemorrhagic disorder.
• Previous cerebrovascular accident or active intracranial bleeding.
Aminocaproic acid:
Aminocaproic acid prevents the binding or plasminogen and plasmin to fibrin. It is a potent inhibitor for fibrinolysis and can reverse states that are associated with excessive fibrinolysis.
Gabapentin (Neurontin): newer; for generalized tonic-clonic seizures and partial seizures (partial and complex)
Mechanism: unknown but know doesn’t mimic GABA inhibition or block Ca currents
Side effects: dizziness, ataxia, fatigue; drug well-tolerated and no significant drug interactions
RENIN-ANGIOTENSIN SYSTEM INHIBITORS
The actions of Angiotensin II include an increase in blood pressure and a stimulation of the secretion of aldosterone (a hormone from the adrenal cortex) that promotes sodium retention. By preventing the formation of angiotensin II, blood pressure will be reduced. This is the strategy for development of inhibitors. Useful inhibitors of the renin-angiotensin system are the Angiotensin Converting Enzyme Inhibitors
First line treatment for: Hypertension , Congestive heart failure [CHF]
ACE-Inhibitor’s MOA (Angiotensin Converting Enzyme Inhibitors)
Renin-Angiotensin Aldosterone System:
. Renin & Angiotensin = vasoconstrictor
. constricts blood vessels & increases BP
. increases SVR or afterload
. ACE Inhibitors blocks these effects decreasing SVR & afterload
. Aldosterone = secreted from adrenal glands
. cause sodium & water reabsorption
. increase blood volume
. increase preload
. ACE I blocks this and decreases preload
Types
Class I: captopril
Class II (prodrug) : e.g., ramipril, enalapril, perindopril
Class III ( water soluble) : lisinopril.
Mechanism of Action
Inhibition of circulating and tissue angiotensin- converting enzyme.
Increased formation of bradykinin and vasodilatory prostaglandins.
Decreased secretion of aldosterone; help sodium excretion.
Advantages
- Reduction of cardiovascular morbidity and mortality in patients with atherosclerotic vascular disease, diabetes, and heart failure.
- Favorable metabolic profile.
- Improvement in glucose tolerance and insulin resistance.
- Renal glomerular protection effect especially in diabetes mellitus.
- Do not adversely affect quality of life.
Indications
- Diabetes mellitus, particularly with nephropathy.
- Congestive heart failure.
- Following myocardial infraction.
Side Effects
- Cough (10 - 30%): a dry irritant cough with tickling sensation in the throat.
- Skin rash (6%).
- Postural hypotension in salt depleted or blood volume depleted patients.
- Angioedema (0.2%) : life threatening.
- Renal failure: rare, high risk with bilateral renal artery stenosis.
- Hyperkalaemia
- Teratogenicity.
Considerations
- Contraindications include bilateral renal artery stenosis, pregnancy, known allergy, and hyperkalaemia.
- High serum creatinine (> 3 mg/dl) is an indication for careful monitoring of renal function, and potassium. Benefits can still be obtained in spite of renal insufficiency.
- A slight stable increase in serum creatinine after the introduction of ACE inhibitors does not limit use.
- ACE-I are more effective when combined with diuretics and moderate salt restriction.
ACE inhibitors drugs
Captopril 50-150 mg
Enalapril 2.5-40 mg
Lisinopril 10-40 mg
Ramipril 2.5-20 mg
Perindopril 2-8 mg
Angiotensin Receptor Blocker
Losartan 25-100 mg
Candesartan 4-32 mg
Telmisartan 20-80 mg
Mechanism of action
They act by blocking type I angiotensin II receptors generally, producing more blockade of the renin -angiotensin - aldosterone axis.
Advantages
• Similar metabolic profile to that of ACE-I.
• Renal protection.
• They do not produce cough.
Indications
Patients with a compelling indication for ACE-I and who can not tolerate them because of cough or allergic reactions.