NEET MDS Lessons
Pharmacology
Valdecoxib
used in the treatment of osteoarthritis, acute pain conditions, and dysmenorrhoea
Etoricoxib new COX-2 selective inhibitor
Ciclopirox:Ciclopirox is a synthetic antifungal agent for topical dermatologic use.
Local anesthetic selection
Local anesthetics are typically divided into 3 main categories:
short, intermediate and long acting local anesthetics.
Based on duration of the procedure and the duration of the individual agents
|
Infiltration |
Nerve block |
||
|
Pulpal |
Soft tissue |
Pulpal |
Soft tissue |
Short |
30 min |
2-3 hrs |
45 min |
2-3 hrs |
Intermediate |
60 min |
2-3 hrs |
75-90 min |
3-4 hrs |
Long |
40 min |
5-6 hrs |
3-4 hrs |
6-8 hrs |
Short acting agents
1. Mepivacaine 3 %
2. Lidocaine 2%
Intermediate acting agents
1. Lidocaine 2% 1:100000 epi
2. Lidocaine 2% 1:50000 epi
3. Mepivacaine 2% 1:20000 neocobefrin
4. Prilocaine 4%
5. Articaine 4% 1:100000 epi
Long acting agents
1. Bupivacaine 0.5% 1:200000 epi
Lithium carbonate: 1st choice (controls mania in bipolar disorders); delay before onset of therapeutic benefit; no psychotropic effects in normal humans
i. Mechanism: blocks enzymes in inositol phosphate signaling pathway; no consistent effects of lithium on NE, 5-HT, and DA
ii. Side effects: severe CNS (ataxia, delirium, coma, convulsions) and CV (cardiac dysrhythmias)
Hydromorphone
- About 8-10 times more potent than morphine when given intravenously.
- Slightly shorter duration of action.
- More soluble than morphine, thus higher concentrations may be injected if necessary.
- Better oral/parenteral absorption ratio than morphine, but not as good as codeine or oxycodone.
- It is used for the treatment of moderate to severe pain
Meperidine (Demerol)
Meperidine is a phenylpiperidine and has a number of congeners. It is mostly effective in the CNS and bowel
- Produces analgesia, sedation, euphoria and respiratory depression.
- Less potent than morphine, 80-100 mg meperidine equals 10 mg morphine.
- Shorter duration of action than morphine (2-4 hrs).
- Meperidine has greater excitatory activity than does morphine and toxicity may lead to convulsions.
- Meperidine appears to have some atropine-like activity.
- Does not constrict the pupils to the same extent as morphine.
- Does not cause as much constipation as morphine.
- Spasmogenic effect on GI and biliary tract smooth muscle is less pronounced than that produced by morphine.
- Not an effective antitussive agent.
- In contrast to morphine, meperidine increases the force of oxytocin-induced contractions of the uterus.
- Often the drug of choice during delivery due to its lack of inhibitory effect on uterine contractions and its relatively short duration of action.
- It has serotonergic activity when combined with monoamine oxidase inhibitors, which can produce serotonin toxicity (clonus, hyperreflexia, hyperthermia, and agitation)
Pharmacokinetics
Pharmacokinetics is the way that the body deals with a drug - how that drug moves throughout the body, and how the body metabolizes and excretes it. The factors and processes involved in pharmacokinetics must be considered when choosing the most effective dose, route and schedule for a drug's use.
The four processes involved in pharmacokinetics are:
Absorption: The movement of a drug from its site of administration into the blood.
Several factors influence a drug's absorption:
- Rate of Dissolution: the faster a drug dissolves the faster it can be absorbed, and the faster the effects will begin.
- Surface Area: Larger surface area = faster absorption.
- Blood Flow: Greater blood flow at the site of drug administration = faster absorption.
- Lipid Solubility: High lipid solubility = faster absorption
- pH Partitioning: A drug that will ionize in the blood and not at the site of administration will absorb more quickly.
Distribution: The movement of drugs throughout the body.
Metabolism: (Biotransformation) The enzymatic alteration of drug structure.
Excretion: The removal of drugs from the body.
As a drug moves through the body, it must cross membranes. Some important factors to consider here then are:
Body's cells are surrounded by a bilayer of phospholipids (cell membrane).
There are three ways that a substance can cross cell membranes:
- Passing through channels and pores: only very small molecules can cross cell membranes this way.
- Transport Systems: Selective carriers that may or may not use ATP.
- Direct Penetration of the Cell Membrane: