NEET MDS Lessons
Pharmacology
Neurolept Anesthesia
An antipsychotic agent such as droperidol plus an opiate analgesic agent such as fentanyl or sufentanil. This latter agent is approximately eight to ten times more potent than fentanyl.
BETA-LACTAM ANTIBIOTICS
β-lactam antibiotics are a broad class of antibiotics including penicillin derivatives, cephalosporins, monobactams, carbapenems and β-lactamase inhibitors; basically any antibiotic agent which contains a β-lactam nucleus in its molecular structure. They are the most widely used group of antibiotics available.
Mode of action All β-lactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls.β-lactam antibiotics were mainly active only against Gram-positive bacteria, the development of broad-spectrum β-lactam antibiotics active against various Gram-negative organisms has increased the usefulness of the β-lactam antibiotics.
Common β-lactam antibiotics
Penicillins
Narrow spectrum penicillins:
benzathine penicillin
benzylpenicillin (penicillin G)
phenoxymethylpenicillin (penicillin V)
procaine penicillin
Narrow spectrum penicillinase-resistant penicillins
methicillin
dicloxacillin
flucloxacillin
Moderate spectrum penicillins :
amoxicillin, ampicillin
Broad spectrum penicillins :
co-amoxiclav (amoxycillin+clavulanic acid)
Extended Spectrum Penicillins:
piperacillin
ticarcillin
azlocillin
carbenicillin
Aspirin
Mechanism of Action
ASA covalently and irreversibly modifies both COX-1 and COX-2 by acetylating serine-530 in the active site Acetylation results in a steric block, preventing arachidonic acid from binding
Uses of Aspirin
Dose-Dependent Effects:
Low: < 300mg blocks platelet aggregation
Intermediate: 300-2400mg/day antipyretic and analgesic effects
High: 2400-4000mg/day anti-inflammatory effects
Often used as an analgesic (against minor pains and aches), antipyretic (against fever), and anti-inflammatory. It has also an anticoagulant (blood thinning) effect and is used in long-term low-doses to prevent heart attacks
Low-dose long-term aspirin irreversibly blocks formation of thromboxane A2 in platelets, producing an inhibitory affect on platelet aggregation, and this blood thinning property makes it useful for reducing the incidence of heart attacks
Its primary undesirable side effects, especially in stronger doses, are gastrointestinal distress (including ulcers and stomach bleeding) and tinnitus. Another side effect, due to its anticoagulant properties, is increased bleeding in menstruating women.
Methicillin
Methicillin is an antibiotic related to penicillin and other beta-lactam containing antibiotics. It is often used to treat infections caused by bacteria carrying an antibiotic resistance, e.g., staphylococci. As methicillin is deactivated by gastric acid, it has to be administered by injection.
Uses Methicillin serves a purpose in the laboratory to determine antibiotic sensitivity in microbiological culture.
Streptomycin
Streptomycin was the first of a class of drugs called aminoglycosides to be discovered, and was the first antibiotic remedy for tuberculosis. It is derived from the actinobacterium Streptomyces griseus.
Streptomycin cannot be given orally, but must be administered by regular intramuscular injection.
Estimation of the risk of anesthesia (American Society of Anesthesiologists scale)
• ASA 1: healthy patient.
• ASA 2: patient with stable, treated illness like arterial hypertension, diabetes melitus, asthma bronchiale, obesity
• ASA 3: patient with systemic illness decreasing sufficiency like heart illness, late infarct
• ASA 4: patient with serious illness influencing his state like renal insuficiency, unstable hypertension, circulatory insuficiency
• ASA 5: patient in life treatening illness
• ASA 6: brain death- potential organ donor
CHOLINERGIC DRUGS
Produce actions similar to Acetylcholine (Ach)
Cholinergic Agonists
1 Acetylcholine 2 Methacholine 3. Carbachol 4 Bethnechol
Alkaloids
1.Muscarine 2 Pilocarpine 3. Arecoline
MECHANISM OF ACTION
I Heart- hyperpolarizes the SA node and decreases the rate of diastolic depolarisation. thus the frequcncy of impulse generation is decreased. bradycardia.
2 Blood vessels- vasodilatation
3. Smooth muscles - increased contraction. increased tone. increased peristalsis.
4. Glands- increased sweating. increased lacrimation.
5 Eye- contraction of the circular muscle of iris (miosis).
Nicotinic action
Autonomic ganglia - stimu1ation of sympathetic and parasympathetic system.
Skeletalmuscles - contraction of fibres.
CNS..No effect as it does not penetrate the blood-brain barrier.
Toxic effects
Flushing. sweating.salivation. cramps. belching. involuntary mictuirition. defaccation.
Contraindication
1.. Anginapectoris- decreases the coronary flow.
2 Pepticulcer - increases the gastric secretion
3 Asthma- bronchoconstriction
4 Hyperthyroidisim
Cholinomimetic Alkaloids
Pilocarpine
Prominent muscarinic actions. causes marked sweating. salivation. Increase of secretions. small doses cause fall in BP but higher doses increase in BP. Applied to the eye cause miosis. fall in intraocular tension
Uses
I. .Open angle glaucoma
2. To counteract mydriasis
Anticholinesterase
They inhibit the enzyme cholinestrase and prolong the action of Ach
Reversible
Physostigamine, Ncostigamine, Pyridostigamine, Ambenonium, Edrophonium, Demecarium
Irreverible
Dyflos. Echothiphate.
Pharmacological Actions
I Ganglia - persistent depolarisation of ganglionic nicotinic receptors.
2 CVS - unprcdictable as Muscarinic-I receptor causes bradycardia but ganglionic stimulation
tachycardia.
3. Skeletal muscles - as Ach is not destroyed and rebinds to the same receptor or it diffuses on to the neighbouring receptors to cause repetitive firing. twitching and fasciculations.
Uses
I As miotic
a) Glaucoma : Acute congestive (narrow angle) glaucoma, Chronic simple (wide angle) glaucoma
b) Counter act atropine mydriasis.
2) Post operative paralytic ileus
3) Myasthenia gravis
4) Postoperativedecurarization
5) Cobra bite
6) Belladona poisoning
7) Other drug overdoses