NEET MDS Lessons
Pharmacology
Biguanides
metformin
Mechanism
↓ gluconeogenesis
appears to inhibit complex 1 of respiratory chain
↑ insulin sensitivity
↑ glycolysis
↓ serum glucose levels
↓ postprandial glucose levels
Clinical use
first-line therapy in type II DM
Toxicity
no hypoglycemia
no weight gain
lactic acidosis is most serious side effect
contraindicated in renal failure
Inhalational Anesthetics
The depth of general anesthesia is directly proportional to the partial pressure of the anesthetic agent in the brain. These agents enter the body through the lungs, dissolve in alveolar blood and are transported to the brain and other tissues.
A. Rate of induction and rate of recovery from anesthesia:
1. The more soluble the agent is in blood, the more drug it takes to saturate the blood and the more time it takes to raise the partial pressure and the depth of anesthesia.
2. The less soluble the agent is in blood, the less drug it takes to saturate the blood and the less time it takes to raise the partial pressure and depth of anesthesia.
B. MAC (minimum alveolar concentration)
The MAC is the concentration of the anesthetic agent that represents the ED50 for these agents. It is the alveolar concentration in which 50% of the patients will respond to a surgical incision.
The lower the MAC the more potent the general anesthetic agent.
C. Inhalation Anesthetic Agents
- Nitrous Oxide
- Ether
- Halothane
- Enflurane
- Isoflurane
DIAGNOSIS
Affective disorders:
I. unipolar depression – depression alone
bipolar affective disorder – alternating II. bipolar affective disorder – alternating depression and mania
Diagnosis is based on
At least five of the following for 2 weeks
I. Depressed mood most of the day
II. Markedly diminished interest or pleasureII. Markedly diminished interest or pleasure
III. Significant weight loss or weight
IV. Insomnia or hypersomnia
V. Psychomotor agitation or retardation
VI. Fatigue or loss of energy
VII. Feelings of worthlessness or excessive guilt
VIII. Diminished ability to think or concentrate,
IX. Recurrent thoughts of death
Underlying biological basis for depression is a deficiency of the monoamine neurotransmitters norepinephrine and/or serotonin in the brain.
Classification Based on
a. Chemical structure
I. Sulphonamidcs.and others - c.g.. sulphadiazine. etc.
2. Beta-lactum ring - e.g.. penicillin
3. Tetracycline - e.g.. Oxytetracycline,.doxycycline.etc.
b. Mechanism of action
1. Inhibits cell-wall synthesis - penicillin. cephalosporin..cycloserine. etc.
2. Cause leakage from cell-membrane – polypeptides (polymyxin, Bacitracin), polyenes (Nystatin)
3. Inhibit protein synthesis - tetracyclines. chloramphenicols. erythromycin.
4. Cause mis-reading of mRNA code - aminoglycosides
5. Interfere with DNA function - refampicin.. metronidazole
6. Interfere with intermediary metabolism - sulphonamides. ethambutole
c. Type of organism against which it is primarily activate
I. Antibacterial - penicillin.
2. Antifungal - nystatin.
d. Spectrum of activity
1. Broad spectrum - tetracylines .
2. Narrow spectrum - penicillin G (penG). streptomycin.erythromycin
e. Type of action
I. Bacteriostatic - sulphonamides, erythromycin.tertracyclines
2. Bacteriocidal - penicillin. aminoglycoside
f. Source
I. Fungi - penicillin. cephalosporins
2. Bacteria - Polymyxin B
Indomethacin
commonly used to reduce fever, pain, stiffness, and swelling. It works by inhibiting the production of prostaglandins, molecules known to cause these symptoms.
Indications
ankylosing spondylitis, rheumatoid arthritis, osteoarthritis, juvenile arthritis, psoriatic arthritis, Reiter's disease, Paget's disease of bone, Bartter's disease, pseudogout, dysmenorrhea (menstrual cramps), pericarditis, bursitis, tendonitis, fever, headaches, nephrogenic , diabetes insipidus (prostaglandin inhibits vasopressin's action in the kidney)
Indomethacin has also been used clinically to delay premature labor, reduce amniotic fluid in polyhydramnios, and to treat patent ductus arteriosus.
Mechanism of action
Indomethacin is a nonselective inhibitor of cyclooxygenase (COX) 1 and 2, enzymes that participate in prostaglandin synthesis from arachidonic acid. Prostaglandins are hormone-like molecules normally found in the body, where they have a wide variety of effects, some of which lead to pain, fever, and inflammation.
Prostaglandins also cause uterine contractions in pregnant women. Indomethacin is an effective tocolytic agent, able to delay premature labor by reducing uterine contractions through inhibition of PG synthesis in the uterus and possibly through calcium channel blockade.
Indomethacin easily crosses the placenta, and can reduce fetal urine production to treat polyhydramnios. It does so by reducing renal blood flow and increasing renal vascular resistance, possibly by enhancing the effects of vasopressin on the fetal kidneys.
Adverse effects
Since indomethacin inhibits both COX-1 and COX-2, it inhibits the production of prostaglandins in the stomach and intestines which maintain the mucous lining of the
gastrointestinal tract. Indomethacin, therefore, like other nonselective COX inhibitors, can cause ulcers.
Many NSAIDs, but particularly indomethacin, cause lithium retention by reducing its excretion by the kidneys.
Indomethacin also reduces plasma renin activity and aldosterone levels, and increases
sodium and potassium retention. It also enhances the effects of vasopressin. Together these may lead to:
edema (swelling due to fluid retention)
hyperkalemia (high potassium levels)
hypernatremia (high sodium levels)
hypertension (high blood pressure)
Sulindac: Is a pro‐drug closely related to Indomethacin.
Converted to the active form of the drug.
Indications and toxicity similar to Indomethacin
Drug-Receptor Interactions
Drug Receptor: any functional macromolecule in a cell to which a drug binds to produce its effects. at receptors, drugs mimic or block the action of the body's own regulatory molecules.
Receptors and Selectivity of Drug Action : If a drug interacts with only one kind of receptor, and if that receptor regulates just a few processes, then the effects of the drug will be limited.
Even though a drug is selective for one type of receptor, it can still produce a variety of effects.
Selectivity does not guarantee safety.
Theories of Drug-Receptor Interaction
- Simple Occupancy Theory: Two factors - The intensity of the response to a drug is proportional to the number of receptors occupied by that drug, and the maximal response will occur when all available receptors have been occupied.
- Modified Occupancy Theory: Assumes that all drugs acting at a particular receptor are identical with respect to the ability to bind to the receptor and the ability to influence receptor function once binding has taken place.
• Affinity: The strength of the attraction between a drug and its receptor. Affinity is reflected in potency. (Drugs with high affinity are very potent).
• Intrinsic Activity: The ability of a drug to activate a receptor following binding. Reflected in the maximal efficacy (drugs with high intrinsic activity have high maximal efficacy).
Stimulants:
Amphetamines: amphetamine is a substrate of serotonin and NE uptake transporters so in cytoplasm, it competes for transport into storage vesicles → ↑ [ ] in cytoplasm then excess amines bind to membrane transporter and are transported out of cell
Drugs:
a. Dextroamphetamine: psychomotor stimulant (↓ fatigue), short-term weight loss, prevents narcolepsy
b. Methylphenidate (Ritalin): prevents narcolepsy, treatment for ADD and ADHD
c. Methamphetamine: psychomotor stimulant, abused widely (cheap, easy to make)
Side effects:
a. CNS: euphoria, anxiety, agitation, delirium, paranoia, panic, suicidal/homicidal impulses, psychoses, tolerance (develops rapidly to most CNS effects), physical dependence (not clinically relevant)
b. CV: headache, chills, arrhythmias and HTN (may be fatal)