NEET MDS Lessons
Pharmacology
Opiate Antagonists
Opiate antagonists have no agonist properties. They are utilized to reverse opiate induced respiratory depression and to prevent drug abuse.
A. Naloxone
Pure opiate antagonist , Short duration of action, Only 1/50th as potent orally as parenterally
B. Naltrexone
Pure opiate antagonist, Long duration of action, Better oral efficacy
Seizure classification:
based on degree of CNS involvement, involves simple ( Jacksonian; sensory or motor cortex) or complex symptoms (involves temporal lobe)
1. Generalized (whole brain involved):
a. Tonic-clonic:
Grand Mal; ~30% incidence; unconsiousness, tonic contractions (sustained contraction of muscle groups) followed by clonic contractions (alternating contraction/relaxation); happens for ~ 2-3 minutes and people don’t breathe during this time
Drugs: phenytoin, carbamazepine, Phenobarbital, lamotrigine, valproic acid
Status epilepticus: continuous seizures; use diazepam (short duration) or diazepam + phenytoin
b. Absence:
Petit Mal; common in children; frequent, brief lapses of consciousness with or without clonic motor activity; see spike and wave EEg at 3 Hz (probably relates to thalamocorticoreverburating circuit)
Drugs: ethosuximide, lamotrigine, valproic acid
c. Myoclonic: uncommon; isolated clinic jerks associated with bursts of EEG spikes;
Drugs: lamotrigine, valproic acid
d. Atonic/akinetic: drop seizures; uncommon; sudden, brief loss of postural muscle tone
Drugs: valproic acid and lamotrigine
2. Partial: focal
a. Simple: Jacksonian; remain conscious; involves motor or sensory seizures (hot, cold, tingling common)
Drugs: carbamazepine, phenytoin, Phenobarbital, lamotrigine, valproic acid, gabapentin
b. Complex: temporal lobe or psychomotor; produced by abnormal electrical activity in temporal lobe (involves emotional functions)
Symptoms: abnormal psychic, cognitive, and behavioral function; seizures consist of confused/altered behavior with impaired consciousness (may be confused with psychoses like schizophrenia or dementia)
Drugs: carbamazepine, phenytoin, laotrigine, valproic acid, gabapentin
Generalizations: most seizures can’t be cured but can be controlled by regular administration of anticonvulsants (many types require treatment for years to decades); drug treatment can effectively control seizures in ~ 80% of patients
Biguanides
metformin
Mechanism
↓ gluconeogenesis
appears to inhibit complex 1 of respiratory chain
↑ insulin sensitivity
↑ glycolysis
↓ serum glucose levels
↓ postprandial glucose levels
Clinical use
first-line therapy in type II DM
Toxicity
no hypoglycemia
no weight gain
lactic acidosis is most serious side effect
contraindicated in renal failure
Mechanism of Action
When a local anesthetic is injected, it is the ionized [cation] form of the local anesthetic that actually binds to anionic channel receptors in the sodium channel, thus blocking the influx of sodium ions which are responsible for lowering the -70mv resting potential towards the firing threshold of -55mv which then results in depolarization of the nerve membrane. However, only the lipid soluble nonionized [base] form of the local anesthetic can penetrate the various barriers [e.g., nerve membrane, fibrous tissue] between the site of injection and the targeted destination which is the sodium channel.
VITAMIN -K
- Group of lipophilic, hydrophobic vitamins.
- Needed for the post-translational modification of coagulation proteins.
- Phylloquinone (vitamin K1) is the major dietary form of vitamin K.
- Vitamin K2 (menaquinone, menatetrenone) is produced by bacteria in the intestines.
Lithium carbonate: 1st choice (controls mania in bipolar disorders); delay before onset of therapeutic benefit; no psychotropic effects in normal humans
i. Mechanism: blocks enzymes in inositol phosphate signaling pathway; no consistent effects of lithium on NE, 5-HT, and DA
ii. Side effects: severe CNS (ataxia, delirium, coma, convulsions) and CV (cardiac dysrhythmias)
Ampicillin offered a broader spectrum of activity than either of the original penicillins and allowed doctors to treat a broader range of both Gram-positive and Gram-negative infections. Ampicillin is often used in molecular biology as a test for the uptake of genes (e.g., by plasmids) by bacteria (e.g., E. coli)