NEET MDS Lessons
Pharmacology
Dissociation constants
Local anesthetic |
pKa |
% of base(RN) at pH 7.4 |
onset of action(min) |
Lidocaine |
7.8 |
29 |
2-4 |
Bupivacaine |
8.1 |
17 |
5-8 |
Mepivacaine |
7.7 |
33 |
2-4 |
Prilocaine |
7.9 |
25 |
2-4 |
Articaine |
7.8 |
29 |
2-4 |
Procaine |
9.1 |
2 |
14-18 |
Benzocaine |
3.5 |
100 |
- |
Halothane (Fluothane) MAC 0.76%, Blood/gas solubility ratio 2.3
- Nonflammable.
- Any depth of anesthesia can be obtained in the absence of hypoxia.
- Halothane produces a marked hypotensive effect
- accompanies hypotension.
- Halothane “sensitizes” the ventricular conduction system in the heart to the action of catecholamines. However, ventricular arrhythmias are rare if
- respiratory acidosis, hypoxia and other causes of sympathetic stimulation are avoided.
- Respiration is depressed by all anesthetic concentrations.
- Halothane is metabolized to a significant extent and some of its metabolic produces have been shown to be hepatotoxic.
- Can produce a malignant hyperpyrexia due to an uncontrolled hypermetabolic reaction in skeletal muscle.
Halothane is generally used with nitrous oxide, an opiate and a neuromuscular blocking drug.
Angiotensin
It is generated in the plasma from a precursor plasma globulin. It is involved in the electrolyte balance, plasma
volume and B.P
Angiotensin I:
Renin is an enzyme produced by the kidney in response to a number of factors including adrenergic activity (β1-
receptor) and sodium depletion. Renin converts a circulating glycoprotein (angiotensinogen) into an inactive material angiotensin-I. It gets activation during passage through pulmonary circulation to angiotensin II by (ACE). ACE is located on the luminal surface of capillary endothelial cells, particularly in the lungs & also present in many organ (e.g brain).
Angiotensin II:
Is an active agent, has a vasoconstrictor action on blood vessels & sodium and water retention
DOBUTAMINE
It is a derivative of dopamine and has relatively β1 -selective action and it also activates α1 receptors and do not have D1 receptor agonistic property. It increases the force of myocardial contraction and cardiac output without significant change in heart rate, blood pressure and peripheral resistance. It is used as inotropic agent and for short term management of CHF and also in patients who are unresponsive to digitalis.
Histamine:
Involved in inflammatory and anaphylactic reactions
Local application causes swelling redness, and edema, mimicking a mild inflammatory reaction.
Large systemic doses leads to profound vascular changes similar to those seen after shock or anaphylactic origin.
Storage: widely distributed; in tissues, primarily in mast cells; in blood- in basophils, platelets; non-mast cell sites (epidermis, CNS, regenerating cells)
Histamine Stored in complex with:
Heparin
Chondroitin Sulfate
Eosinophilic Chemotactic Factor
Neutrophilic Chemotactic Factor
Proteases
Release: during type I (IgE-mediated) immediate hypersensitivity rxns, tissue injury, in response to some drugs
a. Process: Fcε receptor on mast cell or basophil binds IgE, when Ag binds → ↑ PLC activity → histamine
Symptoms: bronchoconstriction, ↓ Pa, ↑ capillary permeability, edema
Action
H1 receptors are located mainly on smooth muscle cells in blood vessels and the respiratory and GI tracts. When histamine binds with these receptors producing the following effects.
-Contraction of smooth muscle in the bronchi and bronchioles producing bronchoconstraction.
-stimulation of vagus nerve endings to produce reflex bronchoconstraction and cough.
-Increased permeability of veins and capillaries, which allows fluid to flow into subcutaneous tissues and form edema (little lower blood pressure).
-Increased secretion of mucous glands. Mucosal edema and increased nasal mucus produce the nasal congestion characteristic of allergic rhinitis and the common cold.
-Stimulation of sensory peripheral nerve endings to cause pain and pruritus.
Histamine promotes vasodilation by causing vascular endothelium to release nitric oxide. This chemical signal diffuses to the vascular smooth muscle, where it stimulates cyclic guanosine monophosphate production, causing vasodilation.
H2-receptors present mostly in gastric glands and smooth muscle of some blood vessels. When receptors are stimulated, the main effects are increased secretion of gastric acid and pepsin, increased rate and force of myocardial contraction.
The H3-receptor functions as a negative-feedback mechanism to inhibit histamine synthesis and release in many body tissues. Stimulation of H3 receptors opposes the effects produced by stimulation of H1 receptors.
The H4- receptor is expressed in only a few cell types, and their role in drug action is unclear.
Drugs cause release of histamine:
Many drugs can cause release of histamine in the body.
-Intracutaneouse morphine injection in humans produced localized redness, localized edema and a diffuse redness. This is due to release of histamine.
-I.V. inj of curare may cause bronchial constriction due to release of histamine.
-codeine , papaverine, meperidine (pethedine), atropine, hydralizine and sympathomimetic amines, histamine releases by these drugs may not be significant unless they are administered I.V in large doses
Pharmacological effects
- If injected I.V. (0.1 mg of histamine) causes a sharp decline in the blood pressure, flushing of the face and headache.
- There is also stimulation of gastric acid secretion.
- If this injection is given to an asthmatic individual, there will be a marked decrease in vital capacity and a sever attack of asthma.
Circulatory effects of histamine:
The two factors involved in the circulatory action of histamine are:
Arteriolar dilatation and
Capillary permeability
So it leads to loss of plasma from circulation
Effect on gastric secretion:
Histamine is a potent stimulant of gastric Hcl secretion.
Class II Beta Blockers
Block SNS stimulation of beta receptors in the heart and decreasing risks of ventricular fibrillation
– Blockage of SA and ectopic pacemakers: decreases automaticity
– Blockage of AV increases the refractory period
- Increase AV nodal conduction ´
- Increase PR interval
- Reduce adrenergic activity
Treatment: Supraventricular tachycardia (AF, flutter, paroxysmal supraventricular tachycardia
– Acebutolol
– Esmolol
– Propanolol
Contraindications and Cautions
• Contraindicated in sinus bradycardia P < 45
• Cardiogenic shock, asthma or respiratory depression which could be made worse by the blocking of Beta receptors.
• Use cautiously in patients with diabetes and thyroid dysfunction, which could be altered by the blockade of Beta receptors
• Renal and hepatic dysfunction could alter the metabolism and excretion of these drugs.
Oxyphenbutazone: one of the metabolites of phenylbutazone. Apazone. Similar to phenylbutazone, but less likely to cause agranulocytosis