NEET MDS Lessons
Pharmacology
α-glucosidase inhibitors
acarbose
miglitol
Mechanism
inhibit α-glucosidases in intestinal brush border
delayed sugar hydrolysis
delayed glucose absorption
↓ postprandial hyperglycemia
↓ insulin demand
Clinical use
type II DM
as monotherapy or in combination with other agents
Morphine
Morphine is effective orally, but is much less effective than when given parenterally due to first-pass metabolism in the liver. Metabolism involves glucuronide formation, the product of which is excreted in the urine.
1. Central Nervous System Effects
• Morphine has mixed depressant and stimulatory actions on the CNS.
• Analgesia:
• Dysphoria – Euphoria
- morphine directly stimulates the chemoreceptor trigger zone, but later depresses the vomiting center in the brain stem. This center is outside the blood/brain barrier.
- opiates appear to relieve anxiety
• Morphine causes the release of histamine and abolishes hunger.
- causes the body to feel warm and the face and nose to itch.
• Pupils are constricted.- due to stimulation of the nuclei of the third cranial nerves.
- tolerance does not develop to this effect.
• Cough reflex is inhibited. - this is not a stereospecific effect.
- dextromethorphan will suppress cough but will not produce analgesia.
• Respiration is depressed
- due to a direct effect on the brain stem respiratory center.
- death from narcotic overdose is nearly always due to respiratory arrest.
- the mechanism of respiratory depression involves:
• a reduction in the responsiveness of the brain stem respiratory centers to an increase in pCO2.
• depression of brain stem centers that regulate respiratory rhythm.
- hypoxic stimulation of respiration is less affected and O2 administration can produce apnea.
2. Cardiovascular Effects
• Postural orthostatic hypotension.- due primarily to peripheral vasodilation, which may be due in part to histamine release.
• Cerebral circulation is also indirectly influenced by increased pCO2, which leads to cerebral vasodilation and increased cerebrospinal fluid pressure.
• In congestive heart failure, morphine decreases the left ventricular workload and myocardial oxygen demand.
3. Endocrine Effects
• Increases prolactin secretion
• Increases vasopressin (ADH) secretion
• Decreases pituitary gonadotropin (LH & FSH) secretion.
• Decreases stress induced ACTH secretion.
4. Gastrointestinal Tract Effects
• Constipation (tolerance does not develop to this effect).
• Several of these agents can be used in the treatment of diarrhea.
There is an increase in smooth muscle tone and a decrease in propulsive contractions.
Adverse Reactions
Generally direct extensions of their pharmacological actions.
1. respiratory depression, apnea
2. nausea and vomiting
3. dizziness, orthostatic hypotension, edema
4. mental clouding, drowsiness
5. constipation, ileus
6. biliary spasm (colic)
7. dry mouth
8. urine retention, urinary hesitancy
9. hypersensitivity reactions (contact dermatitis, urticaria)
Precautions
1. respiratory depression, particularly in the newborn
3. orthostatic hypotension
4. histamine release (asthma, shock)
5. drug interactions (other CNS depressants)
6. tolerance:
- analgesia, euphoria, nausea and vomiting, respiratory depression
7. physical dependence (psychological & physiological)
Meperidine (Demerol)
Meperidine is a phenylpiperidine and has a number of congeners. It is mostly effective in the CNS and bowel
- Produces analgesia, sedation, euphoria and respiratory depression.
- Less potent than morphine, 80-100 mg meperidine equals 10 mg morphine.
- Shorter duration of action than morphine (2-4 hrs).
- Meperidine has greater excitatory activity than does morphine and toxicity may lead to convulsions.
- Meperidine appears to have some atropine-like activity.
- Does not constrict the pupils to the same extent as morphine.
- Does not cause as much constipation as morphine.
- Spasmogenic effect on GI and biliary tract smooth muscle is less pronounced than that produced by morphine.
- Not an effective antitussive agent.
- In contrast to morphine, meperidine increases the force of oxytocin-induced contractions of the uterus.
- Often the drug of choice during delivery due to its lack of inhibitory effect on uterine contractions and its relatively short duration of action.
- It has serotonergic activity when combined with monoamine oxidase inhibitors, which can produce serotonin toxicity (clonus, hyperreflexia, hyperthermia, and agitation)
Griseofulvin
- Griseofulvin is an antifungal drug. It is used both in animals and in humans, to treat ringworm infections of the skin and nails. It is derived from the mold Penicillium griseofulvum.
- It is administered orally.
ANTIBIOTICS
Chemotherapy: Drugs which inhibit or kill the infecting organism and have no/minimum effect on the recipient.
Antibiotic these are substances produced by microorganisms which suppress the growth of or kill other micro-organisms at very low concentrations.
Anti-microbial Agents: synthetic as well as naturally obtained drugs that attenuate micro-organism.
SYNTHETIC ORGANIC ANTIMICROBIAL DRUGS
Sulfonamides
Trimethoprim-sulfamethoxazole
Quinolones – Ciprofloxacin
ANTIBIOTICS THAT ACT ON THE BACTERIAL CELL WALL
Penicillins
Cephalosporins
Vancomycin
INHIBITORS OF BACTERIAL PROTEIN SYNTHESIS
Aminoglycosides - Gentamicin
Antitubercular Drugs: Isoniazid & Rifampin
Tetracyclines
Chloramphenicol
Macrolides – Erythromycin, Azithromycin
Clindamycin
Mupirocin
Linezolid
ANTIFUNGAL DRUGS
Polyene Antibiotics (Amphotericin B, Nystatin and Candicidin)
Imidazole and Triazole Antifungal Drugs
Flucytosine
Griseofulvin
ANTIPROTOZOAL DRUGS
Antimalarial Drugs – Quinine, Chloroquine, Primaquine
Other Antiprotozoal Drugs – Metronidazole, Diloxanide, Iodoquinol
ANTIHELMINTHIC DRUGS
Praziquantel
Mebendazole
Ivermectin
ANTIVIRAL DRUGS
Acyclovir
Ribavirin
Dideoxynucleosides
Protease inhibitors
Loperamide
- Similar chemically and pharmacologically to Diphenoxylate.
- Slows gastrointestinal motility by effects on the circular and longitudinal muscles of the intestine.
- Not well absorbed following oral administration.
- Useful in the treatment of diarrhea.
Biguanides
metformin
Mechanism
↓ gluconeogenesis
appears to inhibit complex 1 of respiratory chain
↑ insulin sensitivity
↑ glycolysis
↓ serum glucose levels
↓ postprandial glucose levels
Clinical use
first-line therapy in type II DM
Toxicity
no hypoglycemia
no weight gain
lactic acidosis is most serious side effect
contraindicated in renal failure