NEET MDS Lessons
Pharmacology
Local Anesthetics
1. Procaine (Novocaine)
a) Classic Ester type agent, first synthetic injectable local anesthetic.
b) Slow onset and short duration of action
2. Tetracaine (Pontocaine)
a) Ester type agent--ten times as potent and toxic as procaine.
b) Slow onset but long duration of action.
c) Available in injectable and topical applications.
3. Propoxycaine (Ravocaine)
a) Ester type agent–five times as potent and toxic as procaine.
b) Often combined with procaine to increase duration of action.
4. Lidocaine (Xylocaine)
a) Versatile widely used amide type agent.
b) Two - three times as potent and toxic as procaine.
c) Rapid onset and relatively long duration of action.
d) Good agent for topical application.
5. Mepivacaine (Carbocaine)
a) Amide type agent similar to lidocaine.
b) Without vasoconstrictor has only short duration of action.
6. Prilocaine (Citanest)
a) Amide type agent — less potent than lidocaine.
b) Without vasoconstrictor has only short duration of action.
c) Metabolized to o-toluidine which can cause methemoglobinemia — significant only with large doses of prilocaine.
d) Higher incidences of paresthesia reported with 4 % preparation
7. Bupivacaine (Marcaine)
a) Amide type agent of high potency and toxicity.
b) Rapid onset and very long duration of action even without vasoconstrictor.
8. Articaine (Septocaine)
a) Amide type agent
b) Only amide-type local anesthetic that contains an ester group, therefore metabolized both in the liver and plasma.
c) Approved by the FDA in 2000
d) Evidence points to improved diffusion through hard and soft tissues as compared to other local anesthetics.
e) Reports of a higher incidence of paresthesia, presumably due to the 4% concentration
f) Not recommended for use in children under 4 years of age
Warfarin (Coumadin):
- The most common oral anticoagulant.
- It is only active in vivo.
- Warfarin is almost completely bound to plasma proteins. -96% to 98% bound.
- Warfarin is metabolized by the liver and excreted in the urine.
- Coumarin anticoagulants pass the placental barrier and are secreted into the maternal milk.
- Newborn infants are more sensitive to oral anticoagulants than are adults because of lower vitamin K levels and lower rates of metabolism.
- Bleeding is the most common side effect and occurs most often from the mucous membranes of the gastrointestinal tract and the genitourinary tract.
Oral anticoagulants are contraindicated in:
• Conditions where active bleeding must be avoided, Vitamin K deficiency and severe
hepatic or renal disease, and where intensive salicylate therapy is required.
Indomethacin
commonly used to reduce fever, pain, stiffness, and swelling. It works by inhibiting the production of prostaglandins, molecules known to cause these symptoms.
Indications
ankylosing spondylitis, rheumatoid arthritis, osteoarthritis, juvenile arthritis, psoriatic arthritis, Reiter's disease, Paget's disease of bone, Bartter's disease, pseudogout, dysmenorrhea (menstrual cramps), pericarditis, bursitis, tendonitis, fever, headaches, nephrogenic , diabetes insipidus (prostaglandin inhibits vasopressin's action in the kidney)
Indomethacin has also been used clinically to delay premature labor, reduce amniotic fluid in polyhydramnios, and to treat patent ductus arteriosus.
Mechanism of action
Indomethacin is a nonselective inhibitor of cyclooxygenase (COX) 1 and 2, enzymes that participate in prostaglandin synthesis from arachidonic acid. Prostaglandins are hormone-like molecules normally found in the body, where they have a wide variety of effects, some of which lead to pain, fever, and inflammation.
Prostaglandins also cause uterine contractions in pregnant women. Indomethacin is an effective tocolytic agent, able to delay premature labor by reducing uterine contractions through inhibition of PG synthesis in the uterus and possibly through calcium channel blockade.
Indomethacin easily crosses the placenta, and can reduce fetal urine production to treat polyhydramnios. It does so by reducing renal blood flow and increasing renal vascular resistance, possibly by enhancing the effects of vasopressin on the fetal kidneys.
Adverse effects
Since indomethacin inhibits both COX-1 and COX-2, it inhibits the production of prostaglandins in the stomach and intestines which maintain the mucous lining of the
gastrointestinal tract. Indomethacin, therefore, like other nonselective COX inhibitors, can cause ulcers.
Many NSAIDs, but particularly indomethacin, cause lithium retention by reducing its excretion by the kidneys.
Indomethacin also reduces plasma renin activity and aldosterone levels, and increases
sodium and potassium retention. It also enhances the effects of vasopressin. Together these may lead to:
edema (swelling due to fluid retention)
hyperkalemia (high potassium levels)
hypernatremia (high sodium levels)
hypertension (high blood pressure)
Sulindac: Is a pro‐drug closely related to Indomethacin.
Converted to the active form of the drug.
Indications and toxicity similar to Indomethacin
Antidepressant Drugs
Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.
Treatment takes several weeks to reach full clinical efficacy.
1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline
2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram
3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine
4. Miscellaneous antidepressants
a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort
Antimania Drugs
These drugs are used to treat manic-depressive illness.
1. Lithium
2. Carbamazepine
3. Valproic acid
Anti-Parkinson Drugs
The disease involves degeneration of dopaminergic neurons in the nigral-striatal pathway in the basal ganglia. The cause is usually unknown. Sometimes it is associated with hypoxia, toxic chemicals, or cerebral infections.
Strategy
1. Increase dopamine in basal ganglia.
2. Block muscarinic receptors in the basal ganglia, since cholinergic function opposes the action of dopamine in the basal ganglia.
3. Newer therapies, such as the use of β-adrenergic receptor blockers.
Drugs
a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.
Mechanisms of action of three drugs affecting DOPA
1. L-dopa plus carbidopa:
L-dopa is able to penetrate the blood–brain barrier and is then converted into dopamine. Carbidopa inhibits dopa decarboxylase, which catalyzes the formation of dopamine.
Carbidopa does not penetrate the blood–brain barrier; it therefore prevents the conversion of L-dopa to dopamine outside the CNS but allows
the conversion of L-dopa to dopamine inside the CNS.
2. Bromocriptine, pergolide, pramipexole, and ropinirole are direct dopamine receptor agonists.
3. Benztropine, trihexyphenidyl, biperiden, and procyclidine are antimuscarinic drugs.
4. Diphenhydramine is an antihistamine that has antimuscarinic action.
5. Amantadine releases dopamine and inhibits neuronal uptake of dopamine.
6. Selegiline is an irreversible inhibitor of monoamine oxidase B (MAO-B), which metabolizes dopamine. Selegiline therefore increases the level of dopamine.
7. Tolcapone is an inhibitor of catechol-O-methyl transferase (COMT), another enzyme that metabolizes dopamine.
8. Entacapone is another COMT inhibitor.
Dopamine and acetylcholine.
Loss of dopaminergic neurons in Parkinsonism leads to unopposed action by cholinergic neurons. Inhibiting muscarinic receptors can help alleviate symptoms of Parkinsonism
Adverse effects
1. L-dopa
- The therapeutic effects of the drug decrease with time.
- Oscillating levels of clinical efficacy of the drug (“on-off” effect).
- Mental changes—psychosis.
- Tachycardia and orthostatic hypotension.
- Nausea.
- Abnormal muscle movements (dyskinesias).
2. Tolcapone, entacapone (similar to L-dopa).
3. Direct dopamine receptor agonists (similar to L-dopa).
4. Antimuscarinic drugs
- Typical antimuscarinic adverse effects such as dry mouth.
b. Sedation.
5. Diphenhydramine (see antimuscarinic drugs).
6. Amantadine
- Nausea.
- Dizziness.
- Edema.
- Sweating.
7. Selegiline
- Nausea.
- Dry mouth.
- Dizziness.
- Insomnia.
- Although selegiline is selective for MAO-B, it still can cause excessive toxicity in the presence of tricyclic antidepressants, SSRIs, and meperidine.
Indications
Parkinson’s disease is the obvious major use of the above drugs. Parkinson-like symptoms can occur with many antipsychotic drugs. These symptoms are often treated with antimuscarinic drugs or diphenhydramine.
Dental implications of anti-Parkinson drugs
1. Dyskinesia caused by drugs can present a challenge for dental treatment.
2. Orthostatic hypotension poses a risk when changing from a reclining to a standing position.
3. The dentist should schedule appointments at a time of day at which the best control of the disease occurs.
4. Dry mouth occurs with several of the drugs.
Antiarrhythmic Drugs
Cardiac Arrhythmias
Can originate in any part of the conduction system or from atrial or ventricular muscle.
Result from
– Disturbances in electrical impulse formation (automaticity)
– Conduction (conductivity)
– Both
MECHANISMS OF ARRHYTHMIA
ARRHYTHMIA – absence of rhythm
DYSRRHYTHMIA – abnormal rhythm
ARRHYTHMIAS result from:
1. Disturbance in Impulse Formation
2. Disturbance in Impulse Conduction
- Block results from severely depressed conduction
- Re-entry or circus movement / daughter impulse
Types of Arrhythmias
• Sinus arrhythmias
– Usually significant only
– if they are severe or prolonged
• Atrial arrhythmias
– Most significant in the presence of underlying heart disease
– Serious: atrial fibrillation can lead to the formation of clots in the heart
• Nodal arrhythmias
– May involve tachycardia and increased workload of the heart or bradycardia from heart block
• Ventricular arrhythmias
– Include premature ventricular contractions (PVCs), ventricular tachycardia, and ventricular fibrillation
|
Class |
Action |
Drugs |
|
I |
Sodium Channel Blockade |
|
|
IA |
Prolong repolarization |
Quinidine, procainamide, disopyramide |
|
IB |
Shorten repolarization |
Lidocaine, mexiletine, tocainide, phenytoin |
|
IC |
Little effect on repolarization |
Encainide, flecainide, propafenone |
|
II |
Beta-Adrenergic Blockade |
Propanolol, esmolol, acebutolol, l-sotalol |
|
III |
Prolong Repolarization (Potassium Channel Blockade; Other) |
Ibutilide, dofetilide, sotalol (d,l), amiodarone, bretylium |
|
IV |
Calcium Channel Blockade |
Verapamil, diltiazem, bepridil |
|
Miscellaneous |
Miscellaneous Actions |
Adenosine, digitalis, magnesium |
Indications
• To convert atrial fibrillation (AF) or flutter to normal sinus rhythm (NSR)
• To maintain NSR after conversion from AF or flutter
• When the ventricular rate is so fast or irregular that cardiac output is impaired
– Decreased cardiac output leads to symptoms of decreased systemic, cerebral, and coronary circulation
• When dangerous arrhythmias occur and may be fatal if not quickly terminated
– For example: ventricular tachycardia may cause cardiac arrest
Mechanism of Action
• Reduce automaticity (spontaneous depolarization of myocardial cells, including ectopic pacemakers)
• Slow conduction of electrical impulses through the heart
• Prolong the refractory period of myocardial cells (so they are less likely to be prematurely activated by adjacent cells
Sympathomimetics
Beta-Adrenergic Agonists
Beta1-adrenergic agonists (dopamine, dobutamine, prenalterol, xamoterol) have been used to treat acute and chronic heart failure, but have limited usefulness in chronic CHF because of their arrhythmogenic effects, short duration of action, the development of tolerance, and necessity of parenteral administration
Dopamine (i.v.) is used in acute heart failure (cardiogenic shock) to increase blood pressure and increase cardiac output
- It has a short half-life (1 min)
- At high doses dopamine has potent peripheral vasoconstrictor effects (alpha-receptor stimulation), in addition to its inotropic effects
- Low dose dopamine has a renal artery dilating effect and may improve sodium and water excretion in patients refractory to loop diuretics
- When systolic pressure is greater than 90 mm Hg, nitroprusside can be added to reduce ventricular filling pressure and reduce afterload
- i.v. furosemide should also be administered to reduce edema
Levodopa and ibopamine, analogs of dopamine that can be administered orally, have been shown to improve symptoms in some patients, but can exhibit arrhythmogenic side-effects and tachyphylaxis
Dobutamine is a somewhat selective beta1-adrenergic agonist that lacks vasoconstrictor activity and causes minimal changes in heart rate
- It is frequently added to nitroprusside when blood pressure is adequate to increase cardiac output
- It is administered as an i.v. infusion to treat acute severe heart failure
- It has a short half-life (2.4 min) and is only used on a short-term basis, although long-term beneficial effects on cardiac function have been noted
- After 72 hours of therapy, tolerance can develop to dobutamine necessitating switch to other inotropic support (e.g. milrinone)
- Dobutamine can enhance AV conduction and worsen atrial tachycardia
Prenalterol and xamoterol are partial beta1-adrenergic agonists that may simultaneously stimulate beta1-receptors and block the receptors from stimulation by endogenous catecholamines, thereby protecting against beta1-receptor down-regulation