NEET MDS Lessons
Pharmacology
Osmotic diuretics
An osmotic diuretic is a type of diuretic that inhibits reabsorption of water and sodium. They are pharmacologically inert substances that are given intravenously. They increase the osmolarity of blood and renal filtrate.
Mechanism(s) of Action
1. Reduce tissue fluid (edema)
2. Reflex cardiovascular effect by osmotic retention of fluid within vascular space which increases blood volume (contraindicated with Congestive heart failure)
3. Diuretic effect
o Makes H2O reabsorption far more difficult for tubular segments insufficient Na & H2O capacity in distal segments
o Increased intramedullary blood flow (washout)
o Incomplete sodium recapture (asc. loop). this is indirect inhibition of Na reabsorption (Na stays in tubule because water stays)
o Net diuretic effect:
Tubular concentration of sodium decreases
Total amount of sodium lost amount increases
GFR unchanged or slightly increased
Toxicity
Circulatory overload, dilutional hyponatremia, Hyperkalemia, edema, skin necrosis
Agents
Mannitol
Operator position
For the right-handed operator, the 8 and 10 o’clock position and for left-handed operators, the corresponding 2 and 4 o’clock position almost always allows for optimal visualization of the injection field.
Benzylpenicillin (penicillin G)
Benzylpenicillin, commonly known as penicillin G, is the gold standard penicillin. Penicillin G is typically given by a parenteral route of administration because it is unstable to the hydrochloric acid of the stomach.
Indications :
bacterial endocarditis, meningitis, aspiration pneumonia, lung abscess,community-acquired pneumonia, syphilis, septicaemia in children
COAGULANTS
An agent that produces coagulation (Coagulation is a complex process by which blood forms clots).
ANTICOAGULANTS
An anticoagulant is a substance that prevents coagulation; that is, it stops blood from clotting.
Anticoagulants:
Calcium Chelators (sodium citrate, EDTA)
Heparin
Dalteparin Sodium (Fragmin) -Low molecular-weight heparin
Enoxaparin - Low molecular-weight heparin
Tinzaparin Sodium - Low molecular-weight heparin
Warfarin
Lepirudin - recombinant form of the natural anticoagulant hirudin: potent and specific Thrombin inhibitor
Bivalirudin - analog of hirudin: potent and specific Thrombin inhibitor
Procoagulants:
Desmopressin acetate
Antiplatelet Drugs:
Acetylsalicylic Acid, Ticlopidine, Sulfinpyrazone, Abciximab , Clopidogrel bisulfate
Fibrinolytic Drugs:
Tissue Plasminogen Activator (t-PA, Activase), Streptokinase (Streptase),
Anistreplase, Urokinase
Antagonists:
Protamine sulfate, Aminocaproic acid
Pharmacological agents used to treat blood coagulation disorders fall in to three major categories:
1. Anticoagulants: Substances that prevent the synthesis of a fibrin network which inhibits coagulation and the formation of arterial thrombi and thromboembolic clots.
2. Antiplatelet agents: Substances that reduce the adhesion and aggregation of platelets.
3. Fibrinolytic agents: Substances that promote the destruction of already formed blood clots or thrombi by disrupting the fibrin mesh.
Second Generation Cephalosporins
Prototype drug is CEFUROXIME (IV) and CEFUROXIME AXETIL (oral). CEFOXITIN has good activity vs. anaerobes.
1. Expanded activity against gram negative bacilli. Still have excellent activity against gram positive (Staph. and Strep.) bacteria.
Activity for Gram negative bacteria
Neisseria sp. (some gonococci resistant)
H. influenzae (including some ampicillin-resistant strains)
Moraxella catarrhalis (some resistance esp. to cefaclor)
E. coli
Proteus mirabilis
Indole + Proteus (some strains resistant)
Morganella morganii (some strains resistant)
Klebsiella pneumoniae
Serratia sp. (many strains resistant)
2. Anaerobic infections - CEFOXITIN & CEFOTETAN only
Moderate activity against Bacteroides fragilis group.
Good activity for other Bacteroides sp., Peptostreptococcus, Fusobacterium, Clostridium sp
Uses
1. Community-acquired pneumonia - Cefuroxime is widely used for empiric therapy. Has activity vs. many ampicillin-resistant H. influenzae strains.
2. Skin and soft tissue infection
3. Urinary tract infections
4. Upper respiratory tract infections (otitis media, sinusitis). Some resistance to H.influenzae to cefaclor (20-30%).
5. Mixed aerobic & anaerobic infections - Cefoxitin & Cefotetan. Resistance to B.fragilis is increasing.
6. Surgical prophylaxis - Cefoxitin or cefotetan are widely used in cases where mixed aerobic & anaerobic infections may occur, esp. intra-abdominal, colorectal, and gynecologic operations. For cardiovascular and orthopedic procedures, cefuroxime and others may be used, but cefazolin is cheaper and appears to work well.
GLP-1 analogs
Exenatide
Mechanism
GLP-1 is an incretin released from the small intestine that aids glucose-dependent insulin secretion
basis for drug mechanism is the observation that more insulin secreted with oral glucose load compared to IV
Exenatide is a GLP-1 agonist
↑ insulin
↓ glucagon release
the class of dipeptidyl peptidase inhibitors ↓ degradation of endogenous GLP-1
e.g.) sitagliptin, -gliptins
Clinical use
type II DM
Toxicity
nausea, vomiting
pancreatitis
hypoglycemia
if given with sulfonylureas
Local Anesthetics
1. Procaine (Novocaine)
a) Classic Ester type agent, first synthetic injectable local anesthetic.
b) Slow onset and short duration of action
2. Tetracaine (Pontocaine)
a) Ester type agent--ten times as potent and toxic as procaine.
b) Slow onset but long duration of action.
c) Available in injectable and topical applications.
3. Propoxycaine (Ravocaine)
a) Ester type agent–five times as potent and toxic as procaine.
b) Often combined with procaine to increase duration of action.
4. Lidocaine (Xylocaine)
a) Versatile widely used amide type agent.
b) Two - three times as potent and toxic as procaine.
c) Rapid onset and relatively long duration of action.
d) Good agent for topical application.
5. Mepivacaine (Carbocaine)
a) Amide type agent similar to lidocaine.
b) Without vasoconstrictor has only short duration of action.
6. Prilocaine (Citanest)
a) Amide type agent — less potent than lidocaine.
b) Without vasoconstrictor has only short duration of action.
c) Metabolized to o-toluidine which can cause methemoglobinemia — significant only with large doses of prilocaine.
d) Higher incidences of paresthesia reported with 4 % preparation
7. Bupivacaine (Marcaine)
a) Amide type agent of high potency and toxicity.
b) Rapid onset and very long duration of action even without vasoconstrictor.
8. Articaine (Septocaine)
a) Amide type agent
b) Only amide-type local anesthetic that contains an ester group, therefore metabolized both in the liver and plasma.
c) Approved by the FDA in 2000
d) Evidence points to improved diffusion through hard and soft tissues as compared to other local anesthetics.
e) Reports of a higher incidence of paresthesia, presumably due to the 4% concentration
f) Not recommended for use in children under 4 years of age