NEET MDS Lessons
Pharmacology
Neurolept Anesthesia
An antipsychotic agent such as droperidol plus an opiate analgesic agent such as fentanyl or sufentanil. This latter agent is approximately eight to ten times more potent than fentanyl.
On the basis of Receptors, drugs can be divided into four groups,
a. agonists
b. antagonists
c. agonist-antagonists
d. partial agonists
a. Agonist
morphine fentanyl pethidine
Action : activation of all receptor subclasses, though, with different affinities
b. Antagonist
Naloxone , Naltrexone
Action : Devoid of activity at all receptor classes
c. Partial Agonist: (Mixed Narcotic Agonists/Antagonists)
Pentazocine, Nalbuphine, Butorphanol , Buprenorphine
Action: activity at one or more, but not all receptor types
With regard to partial agonists, receptor theory states that drugs have two independent properties at receptor sites,
a. affinity
The ability, or avidity to bind to the receptor
Proportional to the association rate constant, Ka
b. efficacy
or, intrinsic activity, and is the ability of the D-R complex to initiate a pharmacological effect
Drugs that produce a less than maximal response and, therefore, have a low intrinsic activity are called partial agonists.
These drugs display certain pharmacological features,
a. the slope of the dose-response curve is less than that of a full agonist
b. the dose response curve exhibits a ceiling with the maximal response below that obtainable by a full agonist
c. partial agonists are able to antagonise the effects of large doses of full agonists
Diphenoxylate (present in Lomotil)
- A meperidine congener
- Not absorbed very well at recommended doses.
- Very useful in the treatment of diarrhea.
Nitrous Oxide (N2O)
MAC 100%, blood/gas solubility ratio 0.47
- An inorganic gas., low solubility in blood, but greater solubility than N2
- Inflammable, but does support combustion.
- Excreted primarily unchanged through the lungs.
- It provides amnesia and analgesia when administered alone.
- Does not produce muscular relaxation.
- Less depressant to both the cardiovascular system and respiratory system than most of the other inhalational anesthetics.
- Lack of potency and tendency to produce anoxia are its primary limitations.
- The major benefit of nitrous oxide is its ability to reduce the amount of the secondary anesthetic agent that is necessary to reach a specified level of anesthesia.
Laxatives and cathartics (purgatives)
Constipation is a common problem in older adults and laxatives are often used or overused. Non drug measures to prevent constipation (e.g. increasing intake of fluid and high–fiber foods, exercise) are much preferred to laxatives.
Laxatives and cathartics are drugs used orally to evacuate the bowels or to promote bowel elimination (defecation). Both terms are used interchangeably because it is the dose that determines the effects rather than a particular drug. For example, Castor oil laxative effect = 4ml while Cathartic effect = 15-60ml
The term laxative implies mild effects, and eliminative of soft formed stool. The term cathartic implies strong effects and elimination of liquid or semi liquid stool.
Laxatives are randomly classified depending on mode of action as:
1. Bulk-forming laxatives: are substances that are largely unabsorbed from the intestine.
They include psyllium, bran, methylcellulose, etc. When water is added, the substances swell and become gel-like which increases the bulk of the faecal mass that stimulates peristalsis and defecation.
2. Osmotic laxatives such as magnesium sulphate, magnesium hydroxide, sodium phosphate, etc. These substances are not efficiently absorbed and cause water retention in the colon. The latter causes increase in volume and pressure which stimulates peristalsis and defecation.
Lactulose is a semisynthetic disaccharide sugar that also acts as an osmotic laxative.
Electrolyte solutions containing polyethylene glycol(PEG) are used as colonic lavage solutions to prepare the gut for radiologic or endoscopic procedures
3. Stimulant (irritant) laxatives: these are irritant that stimulate elimination of large bowel contents. Individual drugs are castor oil, bisacodyl, phenolphthalein, cascara sagrada, glycerine, etc. The faeces are moved too rapidly and watery stool is eliminated. Glycerine can be administered rectally as suppositories.
4. Faecal softeners: they decrease the surface tension of the faecal mass to allow water to penetrate into the stool. They have detergent– like property e.g. docusate(docusate sodium, docusate calcium, and docusate spotassium. )
5. Lubricant laxatives e.g. liquid paraffin (mineral oil). It lubricates the intestine and is thought to soften stool by preventing colonic absorption of faecal water. They are used as retention enema.
6. Chloride channel activators
Lubiprostone works by activating chloride channels to increase fluid secretion in the intestinal lumen. This eases the passage of stools and causes little change in electrolyte balances. Nausea is a relatively common side effect with lubiprostone.
Clinical indications of laxatives
1. To relieve constipation.
2. To prevent straining.
3. To empty the bowel in preparation for bowel surgery or diagnostic procedures.
4. To accelerate elimination of potentially toxic substances from the GI tract.
5. To accelerate excretion of parasite after anti-helmintic drugs have been administered.
Sufentanil
- A synthetic opioid related to fentanyl.
- About 7 times more potent than fentanyl.
- Has a slightly more rapid onset of action than fentanyl.
Aminoglycoside
Aminoglycosides are a group of antibiotics that are effective against certain types of bacteria. They include amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, and tobramycin. Those which are derived from Streptomyces species
Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Streptomycin was the first effective drug in the treatment of tuberculosis, though the role of aminoglycosides such as streptomycin and amikacin have been eclipsed (because of their toxicity and inconvenient route of administration) except for multiple drug resistant strains.
Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis.
Because of their potential for ototoxicity and renal toxicity, aminoglycosides are administered in doses based on body weight. Blood drug levels and creatinine are monitored during the course of therapy.
There is no oral form of these antibiotics: they are generally administered intravenously, though some are used in topical preparations used on wounds.
Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses.