NEET MDS Lessons
Pharmacology
Beta - Adrenergic Blocking Agents
Mechanisms of Action
- Initial decrease in cardiac output, followed by reduction in peripheral vascular resistance.
- Other actions include decrease plasma renin activity, resetting of baroreceptors, release of vasodilator prostaglandins, and blockade of prejunctional beta-receptors.
Advantages
- Documented reduction in cardiovascular morbidity and mortality.
- Cardioprotection: primary and secondary prevention against coronary artery events (i.e. ischemia, infarction, arrhythmias, death).
- Relatively not expensive.
Considerations
- Beta blockers are used with caution in patients with bronchospasm.
- Contraindicated in more than grade I AV, heart block.
- Do not discontinue abruptly.
Side Effects
- Bronchospasm and obstructive airway disease.
- Bradycardia
- Metabolic effects (raise triglyerides levels and decrease HDL cholesterol; may worsen insulin sensitivity and cause glucose intolerance). Increased incidence of diabetes mellitus.
- Coldness of extremities.
- Fatigue.
- Mask symptoms of hypoglycemia.
- Impotence.
Indications
- First line treatment for hypertension as an alternative to diuretics.
- Hypertension associated with coronary artery disease.
- Hyperkinetic circulation and high cardiac output hypertension (e.g., young hypertensives).
- Hypertension associated with supraventricular tachycardia, migraine, essential tremors, or hypertrophic cardiomyopathy.
Beta adrenergic blocker Drugs
Atenolol 25-100
Metoprolol 50-200
Bisoprolol 2.5-10
Gastric acid neutralizers (antacids)
Antacids act primarily in the stomach and are used to prevent and treat peptic ulcer. They are also used in the treatment of Reflux esophagitis and Gastritis.
Mechanism of action:
Antacids are alkaline substances (weak bases) that neutralize gastric acid (hydrochloric acid) they react with hydrochloric acid in the stomach to produce neutral or less acidic or poorly absorbed products and raise the pH of stomach secretion.
Antacids are divided into systemic and non-systemic.
• Systemic antacids (e.g. sodium bicarbonate) are highly absorbed into systemic circulation and enter body fluids. Therefore, they may alter acid–base balance. They can be used in the treatment of metabolic acidosis.
Non-systemic: they do not alter acid–base balance significantly, because they are not well-absorbed into the systemic circulation. They are used as gastric antacids; and include:
• Magnesium compounds such as magnesium hydroxide and magnesium sulphate MgS2O3. They have relatively high neutralizing capacity, rapid onset of action, however, they may cause diarrhoea and hypermagnesemia.
• Aluminium compounds such as aluminium hydroxide. Generally, these have low neutralizing capacity, slow onset of action but long duration of action. They may cause constipation.
• Calcium compounds such as. These are highly effective and have a rapid onset of action but may cause hypersecretion of acid (acid - rebound) and milk-alkali syndrome (hence rarely used in peptic ulcer disease).
Therefore, the most commonly used antacids are mixtures of aluminium hydroxide and magnesium hydroxide .
Amphotericin B
Main use is in systemic fungal infections (e.g. in immunocompromised patients), and in visceral leishmaniasis. Aspergillosis, cryptococcus infections (e.g. meningitis) and candidiasis are treated with amphotericin B. It is also used empirically in febrile immunocompromised patients who do not respond to broad-spectrum antibiotics.
MOA:
As with other polyene antifungals, amphotericin B associates with ergosterol, a membrane chemical of fungi, forming a pore that leads to K+ leakage and fungal cell death
Side effects: nephrotoxicity (kidney damage) , headache, vomiting, convulsions and fever
The side-effects are much milder when amphotericin B is delivered in liposomes
Sympathomimetics -Adrenergic Agents
The sympathomimetic or adrenergic or adrenomimetic drugs mimic the effects of adrenergic sympathetic nerve stimulation.
These are the important group of therapeutic agents which may be used to maintain blood pressure and in certain cases of severe bronchial asthma.
Mechanism of Action and Adrenoceptors
The catecholamines produce their action by direct combination with receptors located on the cell membrane. The adrenergic receptors are divided into two main groups – alpha and beta.
alpha receptor - stimulation produces excitatory effect and
beta receptor -stimulation usually produces inhibitory effect.
Alpha receptors: There are two major groups of alpha receptors, α1 and α2.
Activation of postsynaptic α1 receptors increases the intracellular concentration of calcium by activation of a phospholipase C in the cell membrane via G protein.
α2 receptor is responsible for inhibition of renin release from the kidney and for central aadrenergically mediated blood pressure depression.
Beta receptors:
a. Beta 1 receptors have approximately equal affinity for adrenaline and noradrenaline and are responsible for myocardial stimulation and renin release.
b. Beta 2 - receptors have a higher affinity for adrenaline than for noradrenaline and are responsible for bronchial muscle relaxation, skeletal muscle vasodilatation and uterine relaxation.
c. Dopamine receptors: The D1 receptor is typically associated with the stimulation of adenylyl cyclase. The important agonist of dopamine receptors is fenoldopam (D1) and bromocriptine (D2) and antagonist is clozapine (D4) .
Adrenergic drugs can also be classified into:
a. Direct sympathomimetics: These act directly on a or/and b adrenoceptors e.g. adrenaline, noradrenaline, isoprenaline, phenylephrine, methoxamine salbutamol etc.
b. Indirect sympathomimetics: They act on adrenergic neurones to release noradrenaline e.g. tyramine.
c. Mixed action sympathomimetics: They act directly as well as indirectly e.g. ephedrine, amphetamine, mephentermine etc.
Pharmacological Action of Sympathomimetics
Heart: Direct effects on the heart are determined largely by β1 receptors.
Adrenaline increases the heart rate, force of myocardial contraction and cardiac output
Blood vessels: Adrenaline and noradrenaline constrict the blood vessels of skin and mucous membranes.
Adrenaline also dilates the blood vessels of the skeletal muscles on account of the preponderance of β2 receptor
Blood pressure: Because of vasoconstriction (α1) and vasodilatation (β2) action of adrenaline, the net result is decrease in total peripheral resistance.
Noradrenaline causes rise in systolic, diastolic and mean blood pressure and does not cause vasodilatation (because of no action on β2 receptors) and increase in peripheral resistance due to its a action.
Isoprenaline causes rise in systolic blood pressure (because of β1 cardiac stimulant action) but marked fall in diastolic blood pressure (because of b2 vasodilatation action) but mean blood pressure generally falls.
GIT: Adrenaline causes relaxation of smooth muscles of GIT and reduce its motility.
Respiratory system: The presence of β2 receptors in bronchial smooth muscle causes relaxation and activation of these receptors by β2 agonists cause bronchodilatation.
Uterus: The response of the uterus to the atecholamines varies according to species
Eye: Mydriasis occur due to contraction of radial muscles of iris, intraocular tension is lowered due to less production of the aqueous humor secondary to vasoconstriction and conjunctival ischemia due to constriction of conjunctival blood vessels.
a. Urinary bladder: Detrusor is relaxed (b) and trigone is constricted (a) and both the actions tend to inhibit
micturition.
b. Spleen: In animals, it causes contraction (due to its a action) of the splenic capsule resulting in increase in number of RBCs in circulation.
c. It also cause contraction of retractor penis, seminal vesicles and vas deferens.
d. Adrenaline causes lacrimation and salivary glands are stimulated.
e. Adrenaline increases the blood sugar level by enhancing hepatic glycogenolysis and also by decreasing the uptake of glucose by peripheral tissues.
Adrenaline inhibits insulin release by its a-receptor stimulant action whereas it stimulates glycogenolysis by its b receptor stimulant action.
f. Adrenaline produces leucocytosis and eosinopenia and accelerates blood coagulation and also stimulates platelet aggregation.
Adverse Effects
Restlessness, anxiety, tremor, headache.
Both adrenaline and noradrenaline cause sudden increase in blood pressure, precipitating sub-arachnoid haemorrhage and occasionally hemiplegia, and ventricular arrhythmias.
May produce anginal pain in patients with ischemic heart disease.
Contraindications
a. In patients with hyperthyroidism.
b. Hypertension.
c. During anaesthesia with halothane and cyclopropane.
d. In angina pectoris.
Therapeutic Uses
Allergic reaction: Adrenaline is drug of choice in the treatment of various acute allergic disorders by acting as a physiological antagonist of histamine (a known mediator of many hypersensitivity reactions). It is used in bronchial asthma, acute angioneurotic edema, acute hypersensitivity reaction to drugs and in the treatment of anaphylactic shock.
Bronchial asthma: When given subcutaneously or by inhalation, adrenaline is a potent drug in the treatment of status asthmaticus.
Cardiac uses: Adrenaline may be used to stimulate the heart in cardiac arrest.
Adrenaline can also be used in Stokes-Adam syndrome, which is a cardiac arrest occurring at the transition of partial to complete heart block. Isoprenaline or orciprenaline may be used for the temporary treatment of partial or complete AV block.
Miscellaneous uses:
a. Phenylephrine is used in fundus examination as mydriatic agent.
b. Amphetamines are sometime used as adjuvant and to counteract sedation caused by antiepileptics.
c. Anoretic drugs can help the obese people.
d. Amphetamine may be useful in nocturnal enuresis in children.
e. Isoxsuprine (uterine relaxant) has been used in threatened abortion and dysmenorrhoea.
Properties of inhalation anesthetics
The lower the solubility, the faster the onset and the faster the recoverability.
All general anesthetics:
1. inhibit the brain from responding to sensory stimulation.
2. block the sensory impulses from being recorded in memory.
3. prevent the sensory impulses from evoking “affect”.
Most general anesthetic agents act in part by interacting with the neuronal membranes to affect ion channels and membrane excitability.
· If the concentration given is too low:
1. Movement may occur
2. Reflex activity present (laryngeal spasm)
3. Hypertension
4. Awareness
Premedication of analgesic drugs and muscle relaxants are designed to minimise these effects
· If the concentration given is too high:
1. Myocardial depression
2. Respiratory depression
3. Delayed recovery
Carbapenems: Broadest spectrum of beta-lactam antibiotics.
imipenem with cilastatin
meropenem
ertapenem
Monobactams: Unlike other beta-lactams, there is no fused ring attached to beta-lactam nucleus. Thus, there is less probability of cross-sensitivity reactions.
aztreonam
Beta-lactamase Inhibitors No antimicrobial activity. Their sole purpose is to prevent the inactivation of beta-lactam antibiotics by beta-lactamases, and as such, they are co-administered with beta-lactam antibiotics.
clavulanic acid
tazobactam
sulbactam
Gentamicin
Gentamicin is a aminoglycoside antibiotic, and can treat many different types of bacterial infections, particularly Gram-negative infection.
Gentamicin works by binding to a site on the bacterial ribosome, causing the genetic code to be misread.
Like all aminoglycosides, gentamicin does not pass the gastro-intestinal tract, so it can only be given intravenously or intramuscularly.
Gentamicin can cause deafness or a loss of equilibrioception in genetically susceptible individuals. These individuals have a normally harmless mutation in their DNA, that allows the gentamicin to affect their cells. The cells of the ear are particularly sensitive to this.
Gentamicin can also be highly nephrotoxic, particularly if multiple doses accumulate over a course of treatment. For this reason gentamicin is usually dosed by body weight. Various formulae exist for calculating gentamicin dosage. Also serum levels of gentamicin are monitored during treatment.
E. Coli has shown some resistance to Gentamicin, despite being gram-negative