Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Antidepressant Drugs

Drug treatment of depression is based on increasing serotonin (5-HT) or NE (or both) at synapses in selective tracts in the brain. This can be accomplished by different mechanisms.

Treatment takes several weeks to reach full clinical efficacy.

1. Tricyclic antidepressants (TCAs)
a. Amitriptyline
b. Desipramine
c. Doxepin
d. Imipramine
e. Protriptyline

2. Selective serotonin reuptake inhibitors (SSRIs)
a. Fluoxetine
b. Paroxetine
c. Sertraline
d. Fluvoxamine
e. Citalopram

3. Monoamine oxidase inhibitors (MAOIs)
a. Tranylcypromine
b. Phenelzine

4. Miscellaneous antidepressants

a. Bupropion
b. Maprotiline
c. Mirtazapine
d. Trazodone
e. St. John’s Wort

Antimania Drugs

These drugs are used to treat manic-depressive illness.

1. Lithium
2. Carbamazepine
3. Valproic acid

Gastric acid neutralizers (antacids)

Antacids act primarily in the stomach and are used to prevent and treat peptic ulcer. They are also used in the treatment of Reflux esophagitis and Gastritis.

Mechanism of action: 

Antacids are alkaline substances (weak bases) that neutralize gastric acid (hydrochloric acid) they react with hydrochloric acid in the stomach to produce neutral or less acidic or poorly absorbed products and raise the pH of stomach secretion.

Antacids are divided into systemic and non-systemic.

Systemic antacids (e.g. sodium bicarbonate) are highly absorbed into systemic circulation and enter body fluids. Therefore, they may alter acid–base balance. They can be used in the treatment of metabolic acidosis. 


Non-systemic: they do not alter acid–base balance significantly, because they are not well-absorbed into the systemic circulation. They are used as gastric antacids; and include:

• Magnesium compounds such as magnesium hydroxide and magnesium sulphate MgS2O3. They have relatively high neutralizing capacity, rapid onset of action, however, they may cause diarrhoea and hypermagnesemia.

• Aluminium compounds such as aluminium hydroxide. Generally, these have low neutralizing capacity, slow onset of action but long duration of action. They may cause constipation.

• Calcium compounds such as. These are highly effective and have a rapid onset of action but may cause hypersecretion of acid (acid - rebound) and milk-alkali syndrome (hence rarely used in peptic ulcer disease). 

Therefore, the most commonly used antacids are mixtures of aluminium hydroxide and magnesium hydroxide . 

Angiotensin

It is generated in the plasma from a precursor plasma globulin. It is involved in the electrolyte balance, plasma
volume and B.P

Angiotensin I:
Renin is an enzyme produced by the kidney in response to a number of factors including adrenergic activity (β1-
receptor) and sodium depletion. Renin converts a circulating glycoprotein (angiotensinogen) into an inactive material angiotensin-I. It gets activation during passage through pulmonary circulation to angiotensin II by (ACE). ACE is located on the luminal surface of capillary endothelial cells, particularly in the lungs & also present in many organ (e.g brain).


Angiotensin II:
Is an active agent, has a vasoconstrictor action on blood vessels & sodium and water retention

Phenoxymethylpenicillin (penicillin V) Phenoxymethylpenicillin, commonly known as penicillin V, is the orally-active form of penicillin. It is less active than benzylpenicillin

Indications:

infections caused by Streptococcus pyogenes, tonsillitis, pharyngitis, skin infections, prophylaxis of rheumatic fever, moderate-to-severe gingivitis (with metronidazole)

Selective serotonin reuptake inhibitors (SSRIs)

e.g. fluoxetine, paroxetine, citalopram, and sertraline
- Most commonly used antidepressant category
- Less likely to cause anticholinergic side effects
- Relatively safest antidepressant group in overdose
- Selectively inhibits reuptake of serotonin(5-HT)

Mode of Action;
- Well absorbed when given orally
- Plasma half-lives of 18-24 h allowing once daily dosagedaily dosage
- Metabolised through CYP450 system and most SSRIs inhibit some CYP isoforms
- Therapeutic effect is delayed for 2-4 weeks

ADVERSE DRUG REACTIONS

- Insomnia, increased anxiety, irritability
- Decreased libido
- Erectile dysfunction, anorgasmia, and ejaculatory delay
- Bleeding disorders
- Withdrawal syndrome

Anti-Histamines:
 
The effect of histamine can be opposed in three ways:
1. Physiological antagonism: by using a drug to oppose the effect (e.g adrenaline). Histamine constricts bronchi,
causes vasodilatation which increases capillary permeability. Adrenaline opposes this effect by a mechanism unrelated to histamine.
2. By preventing histamine from reaching its site of action (receptors), By competition with H1-H2 receptors (Drug antagonisms).
3. By preventing the release of histamine. (adrenal steroids and sodium-cromoglycate can suppress the effect on the tissues)

Types of Anti-histamine drugs

Selected H1 antagonist drugs

First-generation H1 receptor antagonists:

Chlorpheniramine (Histadin) & Dexchlorpheniramine 
Diphenhydramine (Allermine)
Promethazine (Phenergan) -  strong CNS depressants
Cyproheptadine (Periactin)

ACTION
These drugs bind to both central and peripheral H1 receptors and can cause CNS depression or stimulation.

- They usually cause CNS depression (drowsiness,sedation) with usual therapeutic doses
- Cause CNS stimulation (anxiety, agitation) 
with excessive doses, especially in children. 
They also have Anticholinergic effects (e.g. dry mouth, urinary retention, constipation, blurred vision).


Second-generation H1 receptor antagonists (non-sedating) agents

Terfenadine
Fexofenadine
Loratadine
Acravistine and Cetirizine
Astemizol

Action

They cause less CNS epression because they are selective for peripheral H1 receptors and do not cross the blood brain barrier.

Indications for use

The drugs can relieve symptoms but don’t relieve hypersensitivity.

1) Allergic rhinitis. Some relief of sneezing, rhinorrhea, nasal airway obstruction and conjunctivitis are with the use of antihistamine.
2) Anaphylaxis. Antihistamine is helpful in treating urticaria and pruritus.
3) Allergic conjunctivitis. This condition, which is characterized by redness, itching and tearing of the eyes.
4) Drug allergies. Antihistamines may be given to prevent or treat reactions to drugs (e.g, before a dignostic test that
uses an iodine preparation).
5) Transfusions of blood and blood products.
6) Dermatologic conditions. Antihistamines are the drug of choice for treatment of allergic contact dermatitis and
acute Urticaria. Urticaria often occurs because the skin has many mast cells to release histamine.
7) Miscellaneous. Some antihistamines are commonly used for non-allergic disorder such as motion sickness, nausea, vomiting, sleep, cough or add to cough mixtures.

Contraindication

hypersensitivity to the drugs, narrow-angle glaucoma, prostatic hypertroph, stenosing peptic ulcer, bladder neck obstruction, during pregnancy and lactating women

Adverse effects:

Drowsiness and sedation
Anticholinergic
Some antihistamines may cause dizziness, fatigue, hypotention, headache, epigastric distress and photosensitivity
Serious adverse reaction including cardiac arrest & death, have been reported in patients receiving high dose astemizole

H2-receptor antagonists

 Cimetidine (Tagamate), Ranitidine (Zantac), Fomatidine, Nizatidine. 

Mechanism of action

Numerous factors influence acid secretion by the stomach, including food, physiological condition and drugs. H2 receptor blockers reduce basal acid-secretion by about 95% and food stimulated acid-secretion by about 70%. Both conc. and vol. of H ions will decrease.

Pharmacokinetics:
1) They are all well absorbed after oral dose.
2) Antacids decrease their absorption in about 10-20%

Uses
Cimetidine -  reduction of gastric secretion is beneficial, these are in main duodenal ulcer, benign gastric ulcer, stomach ulcer and reflux eosophagitis.

Rantidine -used as alternative for duodenal ulcer

Adverse effects:
headache, dizziness, constipation, diarrhoea, tiredness and muscular pain. 

Anti-Parkinson Drugs
The disease involves degeneration of dopaminergic neurons in the nigral-striatal pathway in the basal ganglia. The cause is usually unknown. Sometimes it is associated with hypoxia, toxic chemicals, or cerebral infections.

Strategy
1. Increase dopamine in basal ganglia.
2. Block muscarinic receptors in the basal ganglia, since cholinergic function opposes the action of dopamine in the basal ganglia.
3. Newer therapies, such as the use of β-adrenergic receptor blockers.


Drugs
a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.


Mechanisms of action of three drugs affecting DOPA

1. L-dopa plus carbidopa:
L-dopa is able to penetrate the blood–brain barrier and is then converted into dopamine. Carbidopa inhibits dopa decarboxylase, which catalyzes the formation of dopamine.
Carbidopa does not penetrate the blood–brain barrier; it therefore prevents the conversion of L-dopa to dopamine outside the CNS but allows
the conversion of L-dopa to dopamine inside the CNS.

2. Bromocriptine, pergolide, pramipexole, and ropinirole are direct dopamine receptor agonists.
3. Benztropine, trihexyphenidyl, biperiden, and procyclidine are antimuscarinic drugs.
4. Diphenhydramine is an antihistamine that has antimuscarinic action.
5. Amantadine releases dopamine and inhibits neuronal uptake of dopamine.
6. Selegiline is an irreversible inhibitor of monoamine oxidase B (MAO-B), which metabolizes dopamine. Selegiline therefore increases the level of dopamine.
7. Tolcapone is an inhibitor of catechol-O-methyl transferase (COMT), another enzyme that metabolizes dopamine.
8. Entacapone is another COMT inhibitor.

Dopamine and acetylcholine.
 Loss of dopaminergic neurons in Parkinsonism leads to unopposed action by cholinergic neurons. Inhibiting muscarinic receptors can help alleviate symptoms of Parkinsonism

Adverse effects

1. L-dopa 
-  The therapeutic effects of the drug decrease with time.
- Oscillating levels of clinical efficacy of the drug (“on-off” effect).
- Mental changes—psychosis.
- Tachycardia and orthostatic hypotension.
- Nausea.
- Abnormal muscle movements (dyskinesias).

2. Tolcapone, entacapone (similar to L-dopa).

3. Direct dopamine receptor agonists (similar to L-dopa).

4. Antimuscarinic drugs
-  Typical antimuscarinic adverse effects such as dry mouth.

b. Sedation.

5. Diphenhydramine (see antimuscarinic drugs).

6. Amantadine
-  Nausea.
- Dizziness.
- Edema.
- Sweating.

7. Selegiline
- Nausea.
- Dry mouth.
- Dizziness.
- Insomnia.
- Although selegiline is selective for MAO-B, it still can cause excessive toxicity in the presence of tricyclic antidepressants, SSRIs, and meperidine.

Indications

Parkinson’s disease is the obvious major use of the above drugs. Parkinson-like symptoms can occur with many antipsychotic drugs. These symptoms are often treated with antimuscarinic drugs or diphenhydramine.

Dental implications of anti-Parkinson drugs
1. Dyskinesia caused by drugs can present a challenge for dental treatment.
2. Orthostatic hypotension poses a risk when changing from a reclining to a standing position.
3. The dentist should schedule appointments at a time of day at which the best control of the disease occurs.
4. Dry mouth occurs with several of the drugs.
 

Explore by Exams