NEET MDS Lessons
Pharmacology
Biguanides
metformin
Mechanism
↓ gluconeogenesis
appears to inhibit complex 1 of respiratory chain
↑ insulin sensitivity
↑ glycolysis
↓ serum glucose levels
↓ postprandial glucose levels
Clinical use
first-line therapy in type II DM
Toxicity
no hypoglycemia
no weight gain
lactic acidosis is most serious side effect
contraindicated in renal failure
Class III Potassium Channel Blockers
Prolong effective refractory period by prolonging Action Potential
Treatment: ventricular tachycardia and fibrillation, conversion of atrial fibrillation or flutter to sinus rhythm, maintenance of sinus rhythm
– Amiodarone (Cordarone) – maintenance of sinus rhythm
– Bretylium (Bretylol)
– Ibutilide (Corvert)
– Dofetilide (Tykosyn)
– Sotalol (Betapace)
Amiodarone
- Has characteristics of sodium channel blockers, beta blockers, and calcium channel blockers
- Has vasodilating effects and decreases systemic vascular resistance
- Prolongs conduction in all cardiac tissue
- Decreases heart rate
- Decreases contractility of the left ventricles
Class III - Adverse Effects
- GI- Nausea vomiting and GI distress
- CNS- Weakness and dizziness
- CV-Hypotension, CHF, and arrhythmias are common.
- Amiodarone associated with potentially fatal Hepatic toxicity, ocular abnormalities and serious cardiac arrhythmias.
Drug – Drug Interactions
These drugs can cause serious toxic effects if combined with digoxin or quinidine.
Balanced Anesthesia
A barbiturate, narcotic analgesic agent, neuromuscular blocking agent, nitrous oxide and one of the more potent inhalation anesthetic.
Loperamide
- Similar chemically and pharmacologically to Diphenoxylate.
- Slows gastrointestinal motility by effects on the circular and longitudinal muscles of the intestine.
- Not well absorbed following oral administration.
- Useful in the treatment of diarrhea.
Aspirin
Mechanism of Action
ASA covalently and irreversibly modifies both COX-1 and COX-2 by acetylating serine-530 in the active site Acetylation results in a steric block, preventing arachidonic acid from binding
Uses of Aspirin
Dose-Dependent Effects:
Low: < 300mg blocks platelet aggregation
Intermediate: 300-2400mg/day antipyretic and analgesic effects
High: 2400-4000mg/day anti-inflammatory effects
Often used as an analgesic (against minor pains and aches), antipyretic (against fever), and anti-inflammatory. It has also an anticoagulant (blood thinning) effect and is used in long-term low-doses to prevent heart attacks
Low-dose long-term aspirin irreversibly blocks formation of thromboxane A2 in platelets, producing an inhibitory affect on platelet aggregation, and this blood thinning property makes it useful for reducing the incidence of heart attacks
Its primary undesirable side effects, especially in stronger doses, are gastrointestinal distress (including ulcers and stomach bleeding) and tinnitus. Another side effect, due to its anticoagulant properties, is increased bleeding in menstruating women.
SGLT-2 Inhibitors
canagliflozin
empagliflozin
Mechanism
glucose is reabsorbed in the proximal tubule of the nephron by the sodium-glucose cotransporter 2 (SGLT2)
SGLT2-inhibitors lower serum glucose by increasing urinary glucose excretion
the mechanism of action is independent of insulin secretion or action
Clinical use
type II DM
SYMPATHOMIMETICS
β2 -agonists are invariably used in the symptomatic treatment of asthma.
Epinephrine and ephedrine are structurally related to the catecholamine norepinephrine, a neurotransmitter of the adrenergic nervous system
Some of the important β 2 agonists like salmeterol, terbutaline and salbutamol are invariably used as bronchodilators both oral as well as
aerosol inhalants
SALBUTAMOL
It is highly selective β2 -adrenergic stimulant h-aving a prominent bronchodilator action.
It has poor cardiac action compared to isoprenaline.
TERBUTALINE
It is highly selective β2 agonist similar to salbutamol, useful by oral as well as inhalational route.
SALMETEROL
Salmeterol is long-acting analogue of salbutamol
BAMBUTEROL
It is a latest selective adrenergic β2 agonist with long plasma half life and given once daily in a dose of 10-20 mg orally.
METHYLXANTHINES (THEOPHYLLINE AND ITS DERIVATIVES)
THEOPHYLLINE
Theophylline has two distinct action:
smooth muscle relaxation (i.e. bronchodilatation) and suppression of the response of the airways to stimuli (i.e. non-bronchodilator prophylactic effects).
ANTICHOLINERGICS
Anticholinergics, like atropine and its derivative ipratropium bromide block cholinergic pathways that cause airway constriction.
MAST CELL STABILIZERS
SODIUM CROMOGLYCATE
It inhibits degranulation of mast cells by trigger stimuli.
It also inhibits the release of various asthma provoking mediators e.g. histamine, leukotrienes, platelet activating factor (PAF) and interleukins (IL’s) from mast cell
KETOTIFEN
It is a cromolyn analogue. It is an antihistaminic (H1 antagonist) and probably inhibits airway inflammation induced by platelet activating factor (PAF) in primate.
It is not a bronchodilator. It is used in asthma and symptomatic relief in atopic dermatitis, rhinitis, conjunctivitis and urticaria.
LEUKOTRIENE PATHWAY INHIBITORS
MONTELUKAST
It is a cysteinyl leukotriene receptor antagonist indicated for the management of persistent asthma.