NEET MDS Lessons
Pharmacology
Clarithromycin Used to treat pharyngitis, tonsillitis, acute maxillary
sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), skin and skin structure infections, and, in HIV and AIDS patients to prevent, and to treat, disseminated Mycobacterium avium complex or MAC.
Unlike erythromycin, clarithromycin is acid-stable and can therefore be taken orally without being protected from gastric acids. It is readily absorbed, and diffused into most tissues and phagocytes.
Clarithromycin has a fairly rapid first-pass hepatic metabolism, i.e it is metabolised by the liver. However, this metabolite, 14-hydroxy clarithromycin is almost twice as active as clarithromycin.
Contraindications Clarithromycin should be used with caution if the patient has liver or kidney disease, certain heart problems (e.g., QTc prolongation or bradycardia), or a mineral imbalance (e.g., low potassium or magnesium levels).
Types of Neurons (Function)
•There are 3 general types of neurons (nerve cells):
1-Sensory (Afferent ) neuron:A neuron that detects changes in the external or internal environment and sends information about these changes to the CNS. (e.g: rods and cones, touch receptors). They usually have long dendrites and relatively short axons.
2-Motor (Efferent) neuron:A neuron located within the CNS that controls the contraction of a muscle or the secretion of a gland. They usually have short dendrites and long axons.
2-Interneuron or association neurons: A neuron located entirely within the CNS in which they form the connecting link between the afferent and efferent neurons. They have short dendrites and may have either a short or long axon.
TCI -Target Controlled Infusion
TCI is an infusion system which allows the anaesthetist to select the target blood concentration required for a particular effect and then to control depth of anaesthesia by adjusting the requested target concentration
Mechanism
Instead of setting ml/h or a dose rate (mg/kg/h), the pump can be programmed to target a required blood concentration.
• Effect site concentration targeting is now included for certain pharmacokinetic models.
• The pump will automatically calculate how much is needed as induction and maintenance to maintain that concentration.
Sympathomimetics -Adrenergic Agents
The sympathomimetic or adrenergic or adrenomimetic drugs mimic the effects of adrenergic sympathetic nerve stimulation.
These are the important group of therapeutic agents which may be used to maintain blood pressure and in certain cases of severe bronchial asthma.
Mechanism of Action and Adrenoceptors
The catecholamines produce their action by direct combination with receptors located on the cell membrane. The adrenergic receptors are divided into two main groups – alpha and beta.
alpha receptor - stimulation produces excitatory effect and
beta receptor -stimulation usually produces inhibitory effect.
Alpha receptors: There are two major groups of alpha receptors, α1 and α2.
Activation of postsynaptic α1 receptors increases the intracellular concentration of calcium by activation of a phospholipase C in the cell membrane via G protein.
α2 receptor is responsible for inhibition of renin release from the kidney and for central aadrenergically mediated blood pressure depression.
Beta receptors:
a. Beta 1 receptors have approximately equal affinity for adrenaline and noradrenaline and are responsible for myocardial stimulation and renin release.
b. Beta 2 - receptors have a higher affinity for adrenaline than for noradrenaline and are responsible for bronchial muscle relaxation, skeletal muscle vasodilatation and uterine relaxation.
c. Dopamine receptors: The D1 receptor is typically associated with the stimulation of adenylyl cyclase. The important agonist of dopamine receptors is fenoldopam (D1) and bromocriptine (D2) and antagonist is clozapine (D4) .
Adrenergic drugs can also be classified into:
a. Direct sympathomimetics: These act directly on a or/and b adrenoceptors e.g. adrenaline, noradrenaline, isoprenaline, phenylephrine, methoxamine salbutamol etc.
b. Indirect sympathomimetics: They act on adrenergic neurones to release noradrenaline e.g. tyramine.
c. Mixed action sympathomimetics: They act directly as well as indirectly e.g. ephedrine, amphetamine, mephentermine etc.
Pharmacological Action of Sympathomimetics
Heart: Direct effects on the heart are determined largely by β1 receptors.
Adrenaline increases the heart rate, force of myocardial contraction and cardiac output
Blood vessels: Adrenaline and noradrenaline constrict the blood vessels of skin and mucous membranes.
Adrenaline also dilates the blood vessels of the skeletal muscles on account of the preponderance of β2 receptor
Blood pressure: Because of vasoconstriction (α1) and vasodilatation (β2) action of adrenaline, the net result is decrease in total peripheral resistance.
Noradrenaline causes rise in systolic, diastolic and mean blood pressure and does not cause vasodilatation (because of no action on β2 receptors) and increase in peripheral resistance due to its a action.
Isoprenaline causes rise in systolic blood pressure (because of β1 cardiac stimulant action) but marked fall in diastolic blood pressure (because of b2 vasodilatation action) but mean blood pressure generally falls.
GIT: Adrenaline causes relaxation of smooth muscles of GIT and reduce its motility.
Respiratory system: The presence of β2 receptors in bronchial smooth muscle causes relaxation and activation of these receptors by β2 agonists cause bronchodilatation.
Uterus: The response of the uterus to the atecholamines varies according to species
Eye: Mydriasis occur due to contraction of radial muscles of iris, intraocular tension is lowered due to less production of the aqueous humor secondary to vasoconstriction and conjunctival ischemia due to constriction of conjunctival blood vessels.
a. Urinary bladder: Detrusor is relaxed (b) and trigone is constricted (a) and both the actions tend to inhibit
micturition.
b. Spleen: In animals, it causes contraction (due to its a action) of the splenic capsule resulting in increase in number of RBCs in circulation.
c. It also cause contraction of retractor penis, seminal vesicles and vas deferens.
d. Adrenaline causes lacrimation and salivary glands are stimulated.
e. Adrenaline increases the blood sugar level by enhancing hepatic glycogenolysis and also by decreasing the uptake of glucose by peripheral tissues.
Adrenaline inhibits insulin release by its a-receptor stimulant action whereas it stimulates glycogenolysis by its b receptor stimulant action.
f. Adrenaline produces leucocytosis and eosinopenia and accelerates blood coagulation and also stimulates platelet aggregation.
Adverse Effects
Restlessness, anxiety, tremor, headache.
Both adrenaline and noradrenaline cause sudden increase in blood pressure, precipitating sub-arachnoid haemorrhage and occasionally hemiplegia, and ventricular arrhythmias.
May produce anginal pain in patients with ischemic heart disease.
Contraindications
a. In patients with hyperthyroidism.
b. Hypertension.
c. During anaesthesia with halothane and cyclopropane.
d. In angina pectoris.
Therapeutic Uses
Allergic reaction: Adrenaline is drug of choice in the treatment of various acute allergic disorders by acting as a physiological antagonist of histamine (a known mediator of many hypersensitivity reactions). It is used in bronchial asthma, acute angioneurotic edema, acute hypersensitivity reaction to drugs and in the treatment of anaphylactic shock.
Bronchial asthma: When given subcutaneously or by inhalation, adrenaline is a potent drug in the treatment of status asthmaticus.
Cardiac uses: Adrenaline may be used to stimulate the heart in cardiac arrest.
Adrenaline can also be used in Stokes-Adam syndrome, which is a cardiac arrest occurring at the transition of partial to complete heart block. Isoprenaline or orciprenaline may be used for the temporary treatment of partial or complete AV block.
Miscellaneous uses:
a. Phenylephrine is used in fundus examination as mydriatic agent.
b. Amphetamines are sometime used as adjuvant and to counteract sedation caused by antiepileptics.
c. Anoretic drugs can help the obese people.
d. Amphetamine may be useful in nocturnal enuresis in children.
e. Isoxsuprine (uterine relaxant) has been used in threatened abortion and dysmenorrhoea.
Phenytoin (Dilantin): for tonic-clonic and all partial seizures (not effective against absence seizures)
Mechanism: ↓ reactivation of Na channels (↑ refractory period, blocks high frequency cell firing, ↓ spread of seizure activity from focus)
Side effects: ataxia, vertigo, hirsutism (abnormal hair growth), gingival hyperplasia, osteomalacia (altered vitamin D metabolism and ↓ Ca absorption), blood dyscrasias (rare; megaloblastic anemia, etc)
Drug interactions: induces hepatic microsomal enzymes (can ↓ effectiveness of other drugs); binds tightly to plasma proteins and can displace other drugs
TRICYCLIC ANTIDEPRESSANTS
e.g. amitriptyline, imipramine, nortriptyline
Belong to first generation antidepressants
ACTION:
Inhibit 5-HT(5-hydroxytryptamine) and norepinephrine reuptake
slow clearance of norepinephrine & 5-HT from the synapse
enhance norepinephrine & 5-HT neuro-transmission
MODE OF ACTIONMODE OF ACTION
TCAs also block
– muscarinic acetylcholine receptors
– histamine receptors
– 5-HT receptors
– α1 adrenoceptors
Onset of antidepressant activity takes 2-3 weeks
PHARMACOKINETICS
- Readily absorbed from the gastro-intestinal tract
- Bind strongly to plasma albumin
- Has a large volume of distribution(as a result of binding to extravascular tissues)
- Undergo liver CYP metabolism into biologically active metabolites
- These metabolites are inactivated via glucuronidation and excreted in urine
ADVERSE DRUG REACTIONS
Antimuscarinic - dry mouth, blurred vision, constipation and urinary retention
Antihistamine – drowsiness
adrenoceptor blockage(+/- central effect) postural hypotension
Reduce seizure threshold
Testicular enlargement, gynaecomastia, galactorrhoea
AV-conduction blocks and cardiac arrhythmias
TOXICITY
- Fatal in toxicity
- Most important toxic effect is, slowing of depolarisation of the cardiac action potential by blocking fast sodium channels ("quinidine-like" effect)
- delays propagation of depolarisation through both myocardium and conducting tissue
- prolongation of the QRS complex and the PR/QT intervals
- predisposition to cardiac arrhythmias
DRUG INTERACTIONS
Pharmacodynamic:
– ↑ sedation with antihistamines, alcohol
– ↑ antimuscarinic effects with anticholinergics– ↑ antimuscarinic effects with anticholinergics
– Hypertension and arrhythmias with MAOIs- should be given at least 14 days apart
Pharmacokinetic (via altering CYP metabolism)
– ↓ plasma concentration of TCA by- carbamazepine, rifampicin
– ↑ plasma concentration of TCA by- cimetidine, calcium channel blockers,fluoxetine
OTHER CLINICAL USES OF AMITRIPTYLINE
- Treatment of nocturnal enuresis in children
- Treatment of neuropathic pain
- Migraine prophylaxis
Class III Potassium Channel Blockers
Prolong effective refractory period by prolonging Action Potential
Treatment: ventricular tachycardia and fibrillation, conversion of atrial fibrillation or flutter to sinus rhythm, maintenance of sinus rhythm
– Amiodarone (Cordarone) – maintenance of sinus rhythm
– Bretylium (Bretylol)
– Ibutilide (Corvert)
– Dofetilide (Tykosyn)
– Sotalol (Betapace)
Amiodarone
- Has characteristics of sodium channel blockers, beta blockers, and calcium channel blockers
- Has vasodilating effects and decreases systemic vascular resistance
- Prolongs conduction in all cardiac tissue
- Decreases heart rate
- Decreases contractility of the left ventricles
Class III - Adverse Effects
- GI- Nausea vomiting and GI distress
- CNS- Weakness and dizziness
- CV-Hypotension, CHF, and arrhythmias are common.
- Amiodarone associated with potentially fatal Hepatic toxicity, ocular abnormalities and serious cardiac arrhythmias.
Drug – Drug Interactions
These drugs can cause serious toxic effects if combined with digoxin or quinidine.