Talk to us?

Pharmacology - NEETMDS- courses
NEET MDS Lessons
Pharmacology

Mucosal protective agents. 

 These are locally active agents that help heal gastric and duodenal ulcers by forming a protective barrier between the ulcers and gastric acid, pepsin, and bile salts. They do not alter the secretion of gastric acid. These drugs include sucralfate and colloid bismuth compounds. (e.g. tripotassium, dicitratobismuthate). Colloidal bismuth compounds additionally exert bactericidal action against H.pylori. Also, Prostaglandins have both antisecretory and mucosal protective effects. 
 
 Example: Misoprostol- used for prevention of NSAID – induced ulcer. 

- Drugs that exert antimicrobial action against H.pylori such as amoxicillin, metronidazole, clarithromycin and tetracycline are included in the anti-ulcer treatment regimens. 

 

Procaine penicillin Procaine penicillin is a combination of benzylpenicillin with the local anaesthetic agent procaine. This combination is aimed at reducing the pain and discomfort associated with a large intramuscular injection of penicillin.

Indications

respiratory tract infections where compliance with oral treatment is unlikely ,syphilis, cellulitis

Beta - Adrenoceptor blocking Agents

These are the agents which block the action of sympathetic nerve stimulation and circulating sympathomimetic amines on the beta adrenergic receptors. 

At the cellular level, they inhibit the activity of the membrane cAMP. The main effect is to reduce cardiac activity by diminishing β1 receptor stimulation in the heart. This decreases the rate and force of myocardial contraction of the heart, and decreases the rate of conduction of impulses through the conduction system.

Beta blockers may further be classified on basis of their site of action into following two main classes namely 

cardioselective beta blockers (selective beta 1 blockers) 

non selective beta 1 + beta 2 blockers 

Classification for beta adrenergic blocking agents.

A. Non-selective (β1+β2)

Propranolol  Sotalol  Nadolol Timolol  Alprenolol Pindolol 

With additional alpha blocking activity

Labetalol  Carvedilol  

B. β1 Selective (cardioselective)

Metoprolol  Atenolol  Bisoprolol  Celiprolol  

C. β2  Selective

Butoxamine 


Mechanisms of Action of beta blocker

Beta adrenoceptor Blockers competitively antagonize the responses to catecholamines that are mediated by beta-receptors and other
adrenomimetics at β-receptors 

Because the β-receptors of the heart are primarily of the β1 type and those in the pulmonary and vascular smooth muscle are β2 receptors, β1-selective antagonists are frequently referred to as cardioselective blockers. 


β-adrenergic receptor blockers (β blockers)
1. Used more often than α blockers.
2. Some are partial agonists (have intrinsic sympathomimetic activity).
3. Propranolol is the prototype of nonselective β blockers.
4. β blocker effects: lower blood pressure, reduce angina, reduce risk after myocardial infarction, reduce heart rate and force, have antiarrhythmic effect, cause hypoglycemia in diabetics, lower intraocular pressure.
5. Carvedilol: a nonselective β blocker that also blocks α receptors; used for heart failure.
 

Gastric acid neutralizers (antacids)

Antacids act primarily in the stomach and are used to prevent and treat peptic ulcer. They are also used in the treatment of Reflux esophagitis and Gastritis.

Mechanism of action: 

Antacids are alkaline substances (weak bases) that neutralize gastric acid (hydrochloric acid) they react with hydrochloric acid in the stomach to produce neutral or less acidic or poorly absorbed products and raise the pH of stomach secretion.

Antacids are divided into systemic and non-systemic.

Systemic antacids (e.g. sodium bicarbonate) are highly absorbed into systemic circulation and enter body fluids. Therefore, they may alter acid–base balance. They can be used in the treatment of metabolic acidosis. 


Non-systemic: they do not alter acid–base balance significantly, because they are not well-absorbed into the systemic circulation. They are used as gastric antacids; and include:

• Magnesium compounds such as magnesium hydroxide and magnesium sulphate MgS2O3. They have relatively high neutralizing capacity, rapid onset of action, however, they may cause diarrhoea and hypermagnesemia.

• Aluminium compounds such as aluminium hydroxide. Generally, these have low neutralizing capacity, slow onset of action but long duration of action. They may cause constipation.

• Calcium compounds such as. These are highly effective and have a rapid onset of action but may cause hypersecretion of acid (acid - rebound) and milk-alkali syndrome (hence rarely used in peptic ulcer disease). 

Therefore, the most commonly used antacids are mixtures of aluminium hydroxide and magnesium hydroxide . 

Tetracycline
Tetracycline is an antibiotic produced by the streptomyces bacterium

Mechanism and Resistance Tetracycline inhibits cell growth by inhibiting translation. It binds to the 30S  ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. This prevents the addition of amino acids to the elongating peptide chain, preventing synthesis of proteins. The binding is reversible in nature.

Example: Chlortetracycline, oxytetracycline, demethylchlortetracycline, rolitetracycline, limecycline, clomocycline, methacycline, doxycycline, minocycline

Source: Streptomyces spp.; some are also semi-synthetic

Spectrum of activity: Broad-spectrum. Exhibits activity against a wide range of Gram-positive, Gram-negative bacteria, atypical organisms such as chlamydiae, mycoplasmas, rickettsiae and protozoan parasites.

Effect on bacteria: Bacteriostatic

Cells become resistant to tetracyline by at least two mechanisms: efflux and ribosomal protection.

Contraindications Tetracycline use should be avoided during pregnancy and in the very young (less than 6 years) because it will result in permanent staining of teeth causing an unsightly cosmetic result.

Tetracyclines also become dangerous past their expiration dates. While most prescription drugs lose potency after their expiration dates, tetracyclines are known to become toxic over time; expired tetracyclines can cause serious damage to the kidneys.

Miscellaneous: Tetracyclines have also been used for non-antibacterial purposes, having shown properties such as anti-inflammatory activity, immunosuppresion, inhibition of lipase and collagenase activity, and wound healing.

ANTICHOLINERGIC DRUGS
Blocks the action of Ach on autonomic effectors.

Classification
Natural Alkaloids - Atropine. Hyoscine

Semi-synthetic deriuvatives:- Homatropine, Homatropine methylbromide, Atropine methonitrate.

Synthetic compounds 

(a) Mydriatics - Cyclopentolate. Tropicamide.
(b) Antisecretory - Antispasmodics - Propantha1ine. Oxy-phenonium, Pirenzipine.
c) Antiparkinsonism- Benzotopine, Ethopropazine, Trihexyphenidyl, Procyclidine, Biperiden 
Other drugs with anticholinergic properties • Tricyclic Antidepressants • Phenothiazines • Antihistaminics • Disopyramide

MUSCARINIC RECEPTORS SUBTYPES & ANTAGONISTS 
• M 1 Antagonists – Pirenzepine, Telenzepine, dicyclomine, trihexyphenidyl 
• M 2 Antagonists – Gallamine, methoctramine 
• M 3 Antagonists – Darifenacin, solifenacin, oxybutynin, tolterodine

Pharmacological Actions
CNS - stimulation of medullary centres like vagal. respiratory. vasomotor and inhibition of vestibular excitation and has anti-motion sickness properties.
CVS - tachycardia.
Eye - mydriasis
Smooth muscles - relaxation of the muscles receiving parnsympathetic motor innervation.
Glands - decreased secretion of sweat and salivary glands
Body Temperature - is increased as there is stimulation of  temperature regulating centre.
Respiratory System- Bronchodilatation & decrease in secretions. For COPD or Asthma - antimuscarinic drugs are effective
GIT - Pirenzepine & Telenzepine - decrease gastric secretion with lesser side effects.

First Generation Cephalosporins

Prototype Drugs are CEFAZOLIN (for IV use) and CEPHALEXIN (oral use).

1. Staph. aureus - excellent activity against b-lactamase-producing strains
Not effective against methicillin-resistant Staph. aureus & epidermidis

2. Streptococci - excellent activity versus Streptococcus sp.
Not effective against penicillin-resistant Strep. pneumoniae

3. Other Gm + bacteria - excellent activity except for Enterococcus sp.

4. Moderate activity against gram negative bacteria.

Caution: resistance may occur in all cases.
Susceptible organisms include:

E. coli
Proteus mirabilis
Indole + Proteus sp. (many strains resistant)
Haemophilus influenzae (some strains resistant)
Neisseria sp. (some gonococci resistant)


Uses
1. Upper respiratory tract infections due to Staph. and Strep.
2. Lower respiratory tract infections due to susceptible bacteria e.g. Strep.pneumoniae in penicillin-allergic patient (previous rash)
3. Uncomplicated urinary tract infections (Cephalexin)
4. Surgical prophylaxis for orthopedic and cardiovascular operations (cefazolin preferred because of longer half-life)
5. Staphylococcal infections of skin and skin structure

Explore by Exams