NEET MDS Lessons
Pharmacology
Chloramphenicol
derived from the bacterium Streptomyces venezuelae
Chloramphenicol is effective against a wide variety of microorganisms, but due to serious side-effects (e.g., damage to the bone marrow, including aplastic anemia) in humans, it is usually reserved for the treatment of serious and life-threatening infections (e.g., typhoid fever). It is used in treatment of cholera, as it destroys the
vibrios and decreases the diarrhoea. It is effective against tetracycline-resistant vibrios.It is also used in eye drops or ointment to treat bacterial conjunctivitis.
Mechanism and Resistance Chloramphenicol stops bacterial growth by binding to the bacterial ribosome (blocking peptidyl transferase) and inhibiting protein synthesis.
Chloramphenicol irreversibly binds to a receptor site on the 50S subunit of the bacterial ribosome, inhibiting peptidyl transferase. This inhibition consequently results in the prevention of amino acid transfer to growing peptide chains, ultimately leading to inhibition of protein formation.
Spectrum of activity: Broad-spectrum
Effect on bacteria: Bacteriostatic
Non-barbiturate sedatives
1- Chloral hydrate is trichlorinated derivative of acetaldehyde that is converted to trichlorethanol in the body. It induces sleep in about 30 minutes and last up to 6 hr. it is irritant to GIT and produce unpleasant taste sensation.
2- Ramelteon melatonin receptors are thought to be involved in maintaining circadian rhythms underlying the sleep-wake cycle. Ramelteon is an agonist at MT1 and MT2 melatonin receptors , useful in patients with chronic insomnia with no rebound insomnia and
withdrawal symptoms
3- Ethanol (alcohol) it has antianxiety sedative effects but its toxic potential out ways its benefits.
Ethanol is a CNS depressant producing sedation and hypnosis with increasing dose.
Absorption of alcohol taken orally is rapid, it is highly lipid soluble, presence of food delayed its absorption, maximal blood concentration depend on total dose, sex, strength of the solution, the time over which it is taken, the presence of food and speed of metabolism.
Alcohol in the systemic circulation is oxidized in the liver principally 90% by alcohol dehydrogenase to acetaldehyde and then by acetaldehyde dehydrogenase to products that enter the citric cycle.
Alcohol metabolism by alcohol dehydrogenase follows first order kinetics in the smallest doses. Once the blood concentration exceeds about 10 mg/100 ml, the enzymatic processes are saturated and elimination rate no longer increases with increasing
concentration but become steady at 10-15 ml/ 1 hr. in occasional drinkers.
Thus alcohol is subject to dose dependant kinetics i.e. saturation or zero order kinetics.
Actions
- Ethanol acts on CNS in a manner similar to volatile anesthetic.
- It also enhances GABA so stimulating flux of chloride ions through ion channels.
- Other possible mode of action involve inhibition of Ca-channels and inhibition of excitatory NMDA receptors.
- Ethanol has non selective CNS depressant activity.
- It causes cutaneous vasodilatation, tachycardia and myocardial depression
Benzodiazepines (BZ):
newer; depress CNS, selective anxiolytic effect (no sedative effect); are not general anesthetics (but does produce sedation, stupor) or analgesics
BZ effects:
1. Central: BZs bind GABAA receptors in limbic system (amygdala, septum, hippocampus; involved in emotions) and enhance inhibition of neurons in limbic system (this may produce anxiolytic effects of BZs)
a. GABA receptor: pentameric (α, β, δ, γ subunits)
i. Binding sites: GABA (↑ conductance (G) of Cl-, hyperpolarization, inhibition), barbiturate (↑ GABA effect), benzodiazepine (↑ GABA effect), picrotoxin (block Cl channel)
b. GABA agonists: GABA (binds GABA → Cl influx; have ↑ frequency of Cl channel opening; BZs alone- without GABA don’t affect Cl channel function)
c. Antagonists: bicuculline (competitively blocks GABA binding; ↓ inhibition,→ convulsions; no clinical use), picrotoxin (non-competitively blocks GABA actions, Cl channel → ↓ inhibition → convulsions)
2. Other agents at BZ receptor:
a. Agonists: zolpidem (acts at BZ receptor to produce pharmacological actions)
b. Inverse agonists: β-carbolines (produce opposite effects at BZ binding site-- ↓ Cl conductance; no therapeutic uses since → anxiety, irritability, agitation, delirium, convulsions)
3. Antagonists: flumazenil (block agonists and inverse agonists, have no biological effects themselves; can precipitate withdrawal in dependent people)
Metabolism: many BZs have very long action (since metabolism is slow); drugs have active metabolites
2 major reactions: demethylation and hydroxylation (both very slow reactions)
Fast reaction: glucuronidation and urinary excretion
Plasma half life: long (for treating anxiety, withdrawal, muscle relaxants), intermediate (insomnia, anxiety), short (insomnia), ultra-short (<2hrs; pre-anesthetic medication)
Acute toxicity: very high therapeutic index and OD usually not life threatening (rarely see coma or death)
Treatment: support respiration, BP, gastric lavage, give antagonist (e.g., glumazenil; quickly reverses BD-induced respiratory depression)
Tolerance: types include pharmacodynamic (down-regulation of CNS response due to presence of drug; this is probably the mechanism by which tolerance develops), cross-tolerance (with other BZ and CNS depressants like EtOH and BARBS), acquisition of tolerance (tolerance develops fastest in anticonvulsant > sedation >> muscle relaxant > antianxiety; means people can take BZs for long time for antianxiety without → tolerance)
Physical dependence: low abuse potential (no buz) but physical/psychological dependence may occur; physical dependence present when withdrawal symptoms occur (mild = anxiety, insomnia, irritability, bad dreams, tremors, anorexia; severe = agitation, depression, panic, paranoia, muscle twitches, convulsions)
Drug interactions: minimally induce liver enzymes so few interactions; see additive CNS depressant effects (can be severe and → coma and death if BZs taken with other CNS depressants like ethanol)
Anti-Parkinson Drugs
The disease involves degeneration of dopaminergic neurons in the nigral-striatal pathway in the basal ganglia. The cause is usually unknown. Sometimes it is associated with hypoxia, toxic chemicals, or cerebral infections.
Strategy
1. Increase dopamine in basal ganglia.
2. Block muscarinic receptors in the basal ganglia, since cholinergic function opposes the action of dopamine in the basal ganglia.
3. Newer therapies, such as the use of β-adrenergic receptor blockers.
Drugs
a. L-dopa plus carbidopa (Sinemet).
b. Bromocriptine, pergolide, pramipexole, ropinirole.
c. Benztropine, trihexyphenidyl, biperiden, procyclidine.
d. Diphenhydramine.
e. Amantadine.
f. Tolcapone and entacapone.
g. Selegiline.
Mechanisms of action of three drugs affecting DOPA
1. L-dopa plus carbidopa:
L-dopa is able to penetrate the blood–brain barrier and is then converted into dopamine. Carbidopa inhibits dopa decarboxylase, which catalyzes the formation of dopamine.
Carbidopa does not penetrate the blood–brain barrier; it therefore prevents the conversion of L-dopa to dopamine outside the CNS but allows
the conversion of L-dopa to dopamine inside the CNS.
2. Bromocriptine, pergolide, pramipexole, and ropinirole are direct dopamine receptor agonists.
3. Benztropine, trihexyphenidyl, biperiden, and procyclidine are antimuscarinic drugs.
4. Diphenhydramine is an antihistamine that has antimuscarinic action.
5. Amantadine releases dopamine and inhibits neuronal uptake of dopamine.
6. Selegiline is an irreversible inhibitor of monoamine oxidase B (MAO-B), which metabolizes dopamine. Selegiline therefore increases the level of dopamine.
7. Tolcapone is an inhibitor of catechol-O-methyl transferase (COMT), another enzyme that metabolizes dopamine.
8. Entacapone is another COMT inhibitor.
Dopamine and acetylcholine.
Loss of dopaminergic neurons in Parkinsonism leads to unopposed action by cholinergic neurons. Inhibiting muscarinic receptors can help alleviate symptoms of Parkinsonism
Adverse effects
1. L-dopa
- The therapeutic effects of the drug decrease with time.
- Oscillating levels of clinical efficacy of the drug (“on-off” effect).
- Mental changes—psychosis.
- Tachycardia and orthostatic hypotension.
- Nausea.
- Abnormal muscle movements (dyskinesias).
2. Tolcapone, entacapone (similar to L-dopa).
3. Direct dopamine receptor agonists (similar to L-dopa).
4. Antimuscarinic drugs
- Typical antimuscarinic adverse effects such as dry mouth.
b. Sedation.
5. Diphenhydramine (see antimuscarinic drugs).
6. Amantadine
- Nausea.
- Dizziness.
- Edema.
- Sweating.
7. Selegiline
- Nausea.
- Dry mouth.
- Dizziness.
- Insomnia.
- Although selegiline is selective for MAO-B, it still can cause excessive toxicity in the presence of tricyclic antidepressants, SSRIs, and meperidine.
Indications
Parkinson’s disease is the obvious major use of the above drugs. Parkinson-like symptoms can occur with many antipsychotic drugs. These symptoms are often treated with antimuscarinic drugs or diphenhydramine.
Dental implications of anti-Parkinson drugs
1. Dyskinesia caused by drugs can present a challenge for dental treatment.
2. Orthostatic hypotension poses a risk when changing from a reclining to a standing position.
3. The dentist should schedule appointments at a time of day at which the best control of the disease occurs.
4. Dry mouth occurs with several of the drugs.
Second Generation Cephalosporins
Prototype drug is CEFUROXIME (IV) and CEFUROXIME AXETIL (oral). CEFOXITIN has good activity vs. anaerobes.
1. Expanded activity against gram negative bacilli. Still have excellent activity against gram positive (Staph. and Strep.) bacteria.
Activity for Gram negative bacteria
Neisseria sp. (some gonococci resistant)
H. influenzae (including some ampicillin-resistant strains)
Moraxella catarrhalis (some resistance esp. to cefaclor)
E. coli
Proteus mirabilis
Indole + Proteus (some strains resistant)
Morganella morganii (some strains resistant)
Klebsiella pneumoniae
Serratia sp. (many strains resistant)
2. Anaerobic infections - CEFOXITIN & CEFOTETAN only
Moderate activity against Bacteroides fragilis group.
Good activity for other Bacteroides sp., Peptostreptococcus, Fusobacterium, Clostridium sp
Uses
1. Community-acquired pneumonia - Cefuroxime is widely used for empiric therapy. Has activity vs. many ampicillin-resistant H. influenzae strains.
2. Skin and soft tissue infection
3. Urinary tract infections
4. Upper respiratory tract infections (otitis media, sinusitis). Some resistance to H.influenzae to cefaclor (20-30%).
5. Mixed aerobic & anaerobic infections - Cefoxitin & Cefotetan. Resistance to B.fragilis is increasing.
6. Surgical prophylaxis - Cefoxitin or cefotetan are widely used in cases where mixed aerobic & anaerobic infections may occur, esp. intra-abdominal, colorectal, and gynecologic operations. For cardiovascular and orthopedic procedures, cefuroxime and others may be used, but cefazolin is cheaper and appears to work well.
Sulfonylureas
1st generation
tolbutamide
chlorpropamide
2nd generation
glyburide
glimepiride
glipizide
Mechanism
glucose normally triggers insulin release from pancreatic β cells by increasing intracellular ATP
→ closes K+ channels → depolarization → ↑ Ca2+ influx → insulin release
sulfonylureas mimic action of glucose by closing K+ channels in pancreatic β cells
→ depolarization → ↑ Ca2+ influx → insulin release
its use results in
↓ glucagon release
↑ insulin sensitivity in muscle and liver
Clinical use
type II DM
stimulates release of endogenous insulin
cannot be used in type I DM due to complete lack of islet function
Toxicity
first generation
disulfiram-like effects
especially chlorpropamide
second generation
hypoglycemia
weight gain
Operator position
For the right-handed operator, the 8 and 10 o’clock position and for left-handed operators, the corresponding 2 and 4 o’clock position almost always allows for optimal visualization of the injection field.